期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Strain engineering in electrocatalysis:Strategies,characterization,and insights
1
作者 Qibo Deng Peng Xu +5 位作者 Hassanien Gomaa Mohamed A.Shenashen Sherif A.El-Safty Cuihua An li-hua shao Ning Hu 《Nano Research》 SCIE EI CSCD 2024年第5期3603-3621,共19页
Strain engineering,as a cutting-edge method for modulating the electronic structure of catalysts,plays a crucial role in regulating the interaction between the catalytic surface and the adsorbed molecules.The electroc... Strain engineering,as a cutting-edge method for modulating the electronic structure of catalysts,plays a crucial role in regulating the interaction between the catalytic surface and the adsorbed molecules.The electrocatalytic performance is influenced by the electronic structure,which can be achieved by introducing the external forces or stresses to adjust interatomic spacing between surface atoms.The challenges in strain engineering research lie in accurately understanding the mechanical impact of strain on performance.This paper first introduces the basic strategy for generating the strain,summarizes the different strain generation forms and their advantages and disadvantages.The progress in researching the characterization means for the lattice strains and their applications in the field of electrocatalysis is also emphasized.Finally,the challenges of strain engineering are introduced,and an outlook on the future research directions is provided. 展开更多
关键词 STRAIN ELECTROCATALYSIS CHARACTERIZATION chemical reaction kinetics lattice mismatch
原文传递
All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator 被引量:9
2
作者 Ming Li Yang Jie +4 位作者 li-hua shao Yilin Guo Xia Cao Ning Wang Zhong Lin Wang 《Nano Research》 SCIE EI CAS CSCD 2019年第8期1831-1835,共5页
Aybrid tribo/piezoelectric nanogenerators (HTPENG) have been proven to be highly efficient and versatile as far as the collection and conversion of ambient energy are concerned, and the introduction of flexible and gr... Aybrid tribo/piezoelectric nanogenerators (HTPENG) have been proven to be highly efficient and versatile as far as the collection and conversion of ambient energy are concerned, and the introduction of flexible and green materials is a key step for their potential applications. Here, we developed a HTPENG by using nitrocellulose nanofibril paper as the triboelectric layer and BaTiCVMWCNT@ bacterial cellulose paper as the piezoelectric layer. The output of the triboelelctric paper has considerable performance as fluorinated ethylene propylene, and the output of piezoelectric paper is more than ten times higher than the BTO/polydimethylsiloxane structure. The integrated outputs of the sandwich structured HTPENG are 18 V and 1.6 pA·cm^-2, which are capable of lighting up three LED bulbs and charging a 1 pF capacitor to 2.5 V in 80 s. In addition, the voltage signal generated by the HTPENG in contact-separation mode can be used for dynamic pressure detection. The linear range of dynamic pressure is from 0.5 to 3 N·cm^-2 with a high sensitivity of 8.276 V·cm^-2·N^-1 and a detection limit of 0.2 N·cm^-2. This work provides new insights into the design and application of cellulose-based hybrid nanogenerators with high flexibility and simple structure. 展开更多
关键词 CELLULOSE HYBRID NANOGENERATOR energy HARVESTING pressure sensor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部