The electron–ion recombination for phosphorus-like^(112) Sn^(35+)has been measured at the main cooler storage ring of the Heavy Ion Research Facility in Lanzhou, China, employing an electron–ion merged-beams te...The electron–ion recombination for phosphorus-like^(112) Sn^(35+)has been measured at the main cooler storage ring of the Heavy Ion Research Facility in Lanzhou, China, employing an electron–ion merged-beams technique. The absolute total recombination rate coefficients for electron–ion collision energies from 0 e V–14 e V are presented. Theoretical calculations of recombination rate coefficients were performed using the Flexible Atomic Code to compare with the experimental results. The contributions of dielectronic recombination and trielectronic recombination on the experimental rate coefficients have been identified with the help of the theoretical calculation. The present results show that the trielectronic recombination has a substantial contribution to the measured electron–ion recombination spectrum of^(112)Sn^(35+). Although a reasonable agreement is found between the experimental and theoretical results the precise calculation of the electron–ion recombination rate coefficients for M-shell ions is still challengeable for the current theory.展开更多
The accuracy of dielectronic recombination (DR) data for astrophysics related ions plays a key role in astrophysical plasma modeling. The absolute DR rate coefficient of Fe^17+ ions was measured at the main cooler ...The accuracy of dielectronic recombination (DR) data for astrophysics related ions plays a key role in astrophysical plasma modeling. The absolute DR rate coefficient of Fe^17+ ions was measured at the main cooler storage ring at the Institute of Modern Physics, Lanzhou, China. The experimental electron-ion collision energy range covers the first Rydberg series up to n = 24 for the DR resonances associated with the 2p1/2 →^2 p3/2△n= 0 core excitations. A theoretical calculation was performed by using FAC code and compared with the measured DR rate coefficient. Overall reasonable agreement was found between the experimental results and calculations. Moreover, the plasma rate coefficient was deduced from the experimental DR rate coefficient and compared with the available results from the literature. At the low energy range, significant discrepancies were found, and the measured resonances challenge state-of-the-art theory at low collision energies.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0402300)the Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant Nos.U1732133,11320101003,11611530684,and 11604003)
文摘The electron–ion recombination for phosphorus-like^(112) Sn^(35+)has been measured at the main cooler storage ring of the Heavy Ion Research Facility in Lanzhou, China, employing an electron–ion merged-beams technique. The absolute total recombination rate coefficients for electron–ion collision energies from 0 e V–14 e V are presented. Theoretical calculations of recombination rate coefficients were performed using the Flexible Atomic Code to compare with the experimental results. The contributions of dielectronic recombination and trielectronic recombination on the experimental rate coefficients have been identified with the help of the theoretical calculation. The present results show that the trielectronic recombination has a substantial contribution to the measured electron–ion recombination spectrum of^(112)Sn^(35+). Although a reasonable agreement is found between the experimental and theoretical results the precise calculation of the electron–ion recombination rate coefficients for M-shell ions is still challengeable for the current theory.
基金Supported by the National Key R&D Program of China(2017YFA0402300)the National Natural Science Foundation of China through(11320101003,U1732133,11611530684)Key Research Program of Frontier Sciences,CAS(QYZDY-SSW-SLH006)
文摘The accuracy of dielectronic recombination (DR) data for astrophysics related ions plays a key role in astrophysical plasma modeling. The absolute DR rate coefficient of Fe^17+ ions was measured at the main cooler storage ring at the Institute of Modern Physics, Lanzhou, China. The experimental electron-ion collision energy range covers the first Rydberg series up to n = 24 for the DR resonances associated with the 2p1/2 →^2 p3/2△n= 0 core excitations. A theoretical calculation was performed by using FAC code and compared with the measured DR rate coefficient. Overall reasonable agreement was found between the experimental results and calculations. Moreover, the plasma rate coefficient was deduced from the experimental DR rate coefficient and compared with the available results from the literature. At the low energy range, significant discrepancies were found, and the measured resonances challenge state-of-the-art theory at low collision energies.