期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis 被引量:1
1
作者 li-li dong Ru Tang +2 位作者 Yu-Jia Zhai Tejsu Malla Kai Hu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第11期1633-1639,共7页
AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1(HSV-1) glycoprotein C(g C) and glycoprotein D(g D) will achieve better protective effect against herpes simplex keratitis(HSK) than DNA ... AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1(HSV-1) glycoprotein C(g C) and glycoprotein D(g D) will achieve better protective effect against herpes simplex keratitis(HSK) than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined g D(g D.g C) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293 T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2 wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS: Fusion protein g D.g C could be expressed successfully in cultured 293 T cells. And, p RSC-g C.g DIL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and s Ig A production, enhanced cytotoxicities of splenocytes and nature killer cells(NK),when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION: gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future. 展开更多
关键词 herpes simplex virus 1 keratitis gC-based DNA vaccine nanocarrier immune response
下载PDF
The reversal of surface air temperature anomalies in China between early and late winter 2021/2022:Observations and predictions
2
作者 Chong-Bo ZHAO Qing-Quan LI +4 位作者 Yu NIE Fang WANG Bing XIE li-li dong Jie WU 《Advances in Climate Change Research》 SCIE CSCD 2023年第5期660-670,共11页
During winter of 2021/2022,the temperature in China is characterized by a warm-to-cold transition,and the average temperature anomaly in February 2022 is−1.6℃,the coldest February in 2013-2022.We revealed the circula... During winter of 2021/2022,the temperature in China is characterized by a warm-to-cold transition,and the average temperature anomaly in February 2022 is−1.6℃,the coldest February in 2013-2022.We revealed the circulation regimes and physical mechanisms associated with this reversal event and demonstrated the advantage of a regional model downscaling over the use of the global model alone in predicting.In early winter,the warm anomalies are mainly related to an anomalous anticyclonic system downstream of a PNA-like(Pacific-North America)Rossby-wave train induced by La Niña.In late winter,due to the circulation response to the central Pacific warming and negative tropical Indian Ocean Dipole(TIOD),two‘−+−’Rossby-wave trains from high latitudes and the tropical Indian Ocean jointly lead to an anomalous cyclonic system in China.Meanwhile,an anticyclonic blocking system on the northern side of Baikal brings strong and cold air to China.These two systems together cause a significant drop in surface air temperature anomaly in China during the late winter.The Beijing Climate Center climate system model(BCC_CSM1.1 m)can essentially predict this temperature reversal in China about five months in advance.However,the reversal amplitude is weaker due to warm deviations over the tropical Pacific Ocean and equatorial Indian Ocean.Using dynamic downscaling,a regional Climate-Weather Research and Forecasting(CWRF)model correctly predicts the cold SAT anomalies in late winter 2021/2022.The regional model depicts more realistic circulation patterns in East Asia;the anomalous cyclonic system in Inner Mongolia accompanied by the northerly anomalies contribute to a lower-than-normal SAT over China.This study reveals the cooperative effect of wave trains from high latitudes and the tropics on the subseasonal temperature reversal and demonstrates a possible solution to improve the forecast skill by dynamic downscaling according to precise characterization of local surface information. 展开更多
关键词 2021/2022 winter Dynamical downscaling prediction CWRF BCC_CSM1.1 m Reversal of SAT anomalies
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部