We present a modulation transfer spectroscopy(MTS) configuration based on an acousto-optic modulator by using a variant of the typical double pass structure. One beam is modulated by using an acousto-optic modulator...We present a modulation transfer spectroscopy(MTS) configuration based on an acousto-optic modulator by using a variant of the typical double pass structure. One beam is modulated by using an acousto-optic modulator in opposite diffraction order to cancel the carrier frequency shift and produce a modulated pump beam. The line shape performance is investigated theoretically and experimentally. Laser frequency stabilization of the proposed configuration is demonstrated for the133 Cs |62 S1/2, F = 4 → |62 P3/2, F = 5 transition. The Allan deviations, which are measured by using beat note signals and the three-cornered hat method, are 3.6×10-11 in an integration time of 100 s and approximately 4×10-11 in a longer integration time.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0302101)the Foundation of China Academy of Space Technologythe Initiative Program of State Key Laboratory of Precision Measurement Technology and Instruments,China
文摘We present a modulation transfer spectroscopy(MTS) configuration based on an acousto-optic modulator by using a variant of the typical double pass structure. One beam is modulated by using an acousto-optic modulator in opposite diffraction order to cancel the carrier frequency shift and produce a modulated pump beam. The line shape performance is investigated theoretically and experimentally. Laser frequency stabilization of the proposed configuration is demonstrated for the133 Cs |62 S1/2, F = 4 → |62 P3/2, F = 5 transition. The Allan deviations, which are measured by using beat note signals and the three-cornered hat method, are 3.6×10-11 in an integration time of 100 s and approximately 4×10-11 in a longer integration time.