The Visible and Near-Infrared Imaging Spectrometer (VNIS), using two acousto-optic tunable filters as dispersive components, consists of a VIS/NIR imag- ing spectrometer (0.45-0.95 μm), a shortwave IR spectromet...The Visible and Near-Infrared Imaging Spectrometer (VNIS), using two acousto-optic tunable filters as dispersive components, consists of a VIS/NIR imag- ing spectrometer (0.45-0.95 μm), a shortwave IR spectrometer (0.9-2.4 p.m) and a calibration unit with dust-proofing functionality. The VNIS was utilized to detect the spectrum of the lunar surface and achieve in-orbit calibration, which satisfied the re- quirements for scientific detection. Mounted at the front of the Yutu rover, lunar ob- jects that are detected with the VNIS with a 45° visual angle to obtain spectra and ge- ometrical data in order to analyze the mineral composition of the lunar surface. After landing successfully on the Moon, the VNIS performed several explorations and cal- ibrations, and obtained several spectral images and spectral reflectance curves of the lunar soil in the region of Mare Imbrium. This paper describes the working principle and detection characteristics of the VNIS and provides a reference for data processing and scientific applications.展开更多
基金Supported by the National Natural Science Foundation of China
文摘The Visible and Near-Infrared Imaging Spectrometer (VNIS), using two acousto-optic tunable filters as dispersive components, consists of a VIS/NIR imag- ing spectrometer (0.45-0.95 μm), a shortwave IR spectrometer (0.9-2.4 p.m) and a calibration unit with dust-proofing functionality. The VNIS was utilized to detect the spectrum of the lunar surface and achieve in-orbit calibration, which satisfied the re- quirements for scientific detection. Mounted at the front of the Yutu rover, lunar ob- jects that are detected with the VNIS with a 45° visual angle to obtain spectra and ge- ometrical data in order to analyze the mineral composition of the lunar surface. After landing successfully on the Moon, the VNIS performed several explorations and cal- ibrations, and obtained several spectral images and spectral reflectance curves of the lunar soil in the region of Mare Imbrium. This paper describes the working principle and detection characteristics of the VNIS and provides a reference for data processing and scientific applications.