期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Comparative investigations of ternary thermite Al/Fe_(2)O_(3)/CuO and Al/Fe_(2)O_(3)/Bi_(2)O_(3) from pyrolytic,kinetics and combustion behaviors 被引量:2
1
作者 Shi Li Jia-lin Chen +6 位作者 Tao Guo Wen Ding Lin Jiang Miao Yao Jia-xing Song li-feng xie Yi-ming Mao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期180-190,共11页
To develop new energy enhancement energetic materials with great combustion performance and thermal stability,two kinds of ternary thermite,Al/Fe_(2)O_(3)/CuO and Al/Fe_(2)O_(3)/Bi_(2)O_(3),were prepared and analyzed ... To develop new energy enhancement energetic materials with great combustion performance and thermal stability,two kinds of ternary thermite,Al/Fe_(2)O_(3)/CuO and Al/Fe_(2)O_(3)/Bi_(2)O_(3),were prepared and analyzed via mechanical ball milling.The samples were characterized by SEM,XRD,TG-DSC,constant volume and constant pressure combustion experiments.The first exothermic peaks of Al/Fe_(2)O_(3)/CuO and Al/Fe_(2)O_(3)/Bi_(2)O_(3) appear at 579°C and 564.5°C,respectively.The corresponding activation energies are similar.The corresponding mechanism functions are set as G(a) = [-ln(1-a)]^(3/4) and G(a) =[-ln(1-a)]2/3,respectively,which belong to the Avrami-Erofeev equation.Al/Fe_(2)O_(3)/CuO has better thermal safety.For small dose samples,its critical temperature of thermal explosion is 121.05°C higher than that of Al/Fe_(2)O_(3)/Bi_(2)O_(3).During combustion,the flame of Al/Fe_(2)O_(3)/CuO is spherical,and the main products are FeAl_(2)O_(4) and Cu.The flame of Al/Fe_(2)O_(3)/Bi_(2)O_(3)is jet-like,and the main products are Al_(2)O_(3),Bi and Fe.Al/Fe_(2)O_(3)/Bi_(2)O_(3)has better ignition and gas production performance.Its average ignition energy is 4.2 J lower than that of Al/Fe_(2)O_(3)/CuO.Its average step-up rate is 28.29 MPa/s,which is much higher than 6.84 MPa/s of Al/Fe_(2)O_(3)/CuO.This paper provides a reference for studying the thermal safety and combustion performance of ternary thermite. 展开更多
关键词 Ternary thermite Thermal kinetics Reaction mechanism Combustion
下载PDF
Dynamic evolution of low-viscosity fuel particle distribution driven by constant flow
2
作者 杨仲坤 安高军 +5 位作者 徐曦萌 郑哲 王永旭 解立峰 张丹 李斌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期416-427,共12页
The effects of mass concentration and injection pressure on the atomization characteristics of low-viscosity fuel spray are studied in a constant-volume chamber.Microscopic spray parameters are measured by laser diffr... The effects of mass concentration and injection pressure on the atomization characteristics of low-viscosity fuel spray are studied in a constant-volume chamber.Microscopic spray parameters are measured by laser diffraction at different axial and radial positions downstream of the nozzle.The results show that the atomization effect is inhibited linearly with the increase of mass concentration.The increase of injection pressure promotes the droplet breakup.However,the trend gradually weakens and becomes more noticeable at high concentrations.Comparing with the concentration,the influence of the injection pressure on the atomization characteristics is dominant.Although low concentration and high injection pressure can promote the droplet breakup,they also increase the probability of droplet collision,resulting in droplet aggregation.This is more evident in low-viscosity fuels.The droplet size increases in the axial direction owing to the aggregation.However,the diameter decreases in the radial direction owing to the outward deflection of small droplets caused by air turbulence and entrainment.In addition,the high-velocity airflow significantly promotes the droplet breakup near the nozzle and spray axis regions and inhibits the aggregation effect.However,the lower-viscosity fuels keep smaller droplet sizes and better atomization in the whole spraying process,which is easier to realize than the higher-viscosity fuels.Overall,low concentration,high injection pressure,and low viscosity of fuel have beneficial effects on the droplet breakup.This is very important for improving the atomization effect of fuel. 展开更多
关键词 low-viscosity fuel spray and atomization particle distribution laser diffraction
下载PDF
Electrostaticspray preparation and properties of RDX/DOS composites 被引量:5
3
作者 Jian Yao Jian Liu +2 位作者 Yong-xu Wang Bin Li li-feng xie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第4期263-268,共6页
A composite explosive based on 1,3,5-trinitro-1,3,5-triazinane(RDX)was prepared by electrostaticspray method with dioctyl sebacate(DOS)as desensitizer.After preparation,the particle size and crystal structure were cha... A composite explosive based on 1,3,5-trinitro-1,3,5-triazinane(RDX)was prepared by electrostaticspray method with dioctyl sebacate(DOS)as desensitizer.After preparation,the particle size and crystal structure were characterized and chemical features,such as chemical bonds,functional groups,thermal decomposition parameters and mechanical sensitivity were investigated as well.In terms of the morphologies of the composites,the particle sizes were in the range of 1e3 mm.Compared with RDX,the crystal types,chemical bonds and functional groups of the RDX/DOS composites were unchanged.The activation energy of the composites was lower than that of raw RDX,and the 3wt%DOS composites had the lowest activation energy.The impact sensitivity and friction sensitivity of the RDX/DOS composites were lower than those of raw RDX,and the 10wt%DOS composites had the highest H50(125.9 cm)and the lowest friction sensitivity(8%). 展开更多
关键词 RDX DOS Electrostaticspray COMPOSITES Insensitive
下载PDF
Effect of metal powders on explosion of fuel-air explosives with delayed secondary igniters 被引量:4
4
作者 Yong-xu Wang Yi Liu +2 位作者 Qi-ming Xu Bin Li li-feng xie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期785-791,共7页
In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate.Metal powders’ e... In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate.Metal powders’ explosive properties and reaction mechanisms in FAE were studied by high-speed video,pressure test system, and infrared thermal imager. The results show that compared with pure liquid fuels, the shock wave overpressure, maximum surface fireball temperature and high temperature duration of the mixture were significantly increased after adding high energetic metal powder. The overpressure values of the liquid-solid mixture at all measuring points were higher than that of the pure liquid fuels. And the maximum temperature of the fireball was up to 1700C, which was higher than that of the pure liquid fuels. After replacing 30% of aluminum powder with boron or magnesium hydride, the shock wave pressure of the mixture was further increased. The high heat of combustion of boron and the hydrogen released by magnesium hydride could effectively increase the blast effect of the mixture. The improvement of the explosion performance of boron was better than magnesium hydride. It shows that adding high energetic metal powder to liquid fuels can effectively improve the explosion performance of FAE. 展开更多
关键词 Fuel air explosive Aluminum powder BORON Magnesium hydride Explosion performance
下载PDF
Studies on the flame propagation characteristic and thermal hazard of the premixed N2O/fuel mixtures 被引量:1
5
作者 Yu-yan Li Rong-pei Jiang +3 位作者 Zhi-peng Li Sen Xu Feng Pan li-feng xie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期564-570,共7页
An experimental study was carried out to investigate the flame propagation and thermal hazard of the premixed N2O/fuel mixtures,including NH3,C3H8 and C2H4.The study provided the high speed video images and data about... An experimental study was carried out to investigate the flame propagation and thermal hazard of the premixed N2O/fuel mixtures,including NH3,C3H8 and C2H4.The study provided the high speed video images and data about the flame locations,propagation patterns,overpressures and the quenching diameters during the course of combustion in different channels to elucidate the dynamics of various combustion processes.The onset decomposition temperature was determined using high-performance adiabatic calorimetry.It was shown that the order of the flame acceleration rate and thermal hazard was N2O/C2H4>N2O/C3H8>N2O/NH3. 展开更多
关键词 Flame propagation Flame acceleration rate Quenching diameter Thermal hazard
下载PDF
Experimental study on detonation parameters and cellular structures of fuel cloud
6
作者 li-feng xie Bin Li Yu-Lei Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期438-443,共6页
In this paper, detonation parameters of fuel cloud, such as propylene oxide (PO), isopropyl nitrate (IPN), hex- ane, 90# oil and decane were measured in a self-designed and constructed vertical shock tube. Results... In this paper, detonation parameters of fuel cloud, such as propylene oxide (PO), isopropyl nitrate (IPN), hex- ane, 90# oil and decane were measured in a self-designed and constructed vertical shock tube. Results show that the deto- nation pressure and velocity of PO increase to a peak value and then decrease smoothly with increasing equivalence ra- tio. Several nitrate sensitizers were added into PO to make fuel mixtures, and test results indicated that the additives can efficiently enhance detonation velocity and pressure of fuel cloud and one type of additive n-propyl nitrate (NPN) played the best in the improvement. The critical initiation energy that directly initiated detonation of all the test liquid fuel clouds showed a U-shape curve relationship with equiva- lence ratios. The optimum concentration lies on the rich-fuel side (;b 〉 1). The critical initiation energy is closely related to molecular structure and volatility of fuels. IPN and PO have similar critical values while that of alkanes are larger. Detonation cell sizes of PO were respectively investigated at 25;C, 35;C and 50;C with smoked foil technique. The cell width shows a U-shape curve relationship with equivalence ratios at all temperatures. The minimal cell width also lies on the rich-fuel side (;b 〉 1). The cell width of PO vapor is slightly larger than that of PO cloud. Therefore, the deto- nation reaction of PO at normal temperature is controlled by gas phase reaction. 展开更多
关键词 Cloud detonation Detonation velocity Deto- nation pressure - Critical initiation energy Cell size
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部