期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
5A06-O aluminium−magnesium alloy sheet warm hydroforming and optimization of process parameters 被引量:4
1
作者 Zhi-hui JIAO li-hui lang Xiang-ni ZHAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期2939-2948,共10页
The uniaxial tensile test of the 5A06-O aluminium−magnesium(Al−Mg)alloy sheet was performed in the temperature range of 20−300℃ to obtain the true stress−true strain curves at different temperatures and strain rates.... The uniaxial tensile test of the 5A06-O aluminium−magnesium(Al−Mg)alloy sheet was performed in the temperature range of 20−300℃ to obtain the true stress−true strain curves at different temperatures and strain rates.The constitutive model of 5A06-O Al−Mg alloy sheet with the temperature range from 150 to 300℃ was established.Based on the test results,a unique finite element simulation platform for warm hydroforming of 5A06-O Al−Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen,and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up.Combined with the experiment,the influence of the temperature field distribution and loading conditions on the sheet formability was studied.The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material.As the temperature increases,the impact of the punching speed on the forming becomes particularly obvious;the optimal values of the fluid pressure and blank holder force required for forming are reduced. 展开更多
关键词 Al−Mg alloy constitutive model warm hydroforming finite element analysis non-isothermal temperature field
下载PDF
Diffusion bonding of Ti−6Al−4V titanium alloy powder and solid by hot isostatic pressing 被引量:1
2
作者 Yi XIAO li-hui lang +1 位作者 Wen-cai XU De-xin ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第11期3587-3595,共9页
The Ti−6Al−4V(TC4)alloy powder and forged solid were diffusion bonded by hot isostatic pressing(HIP)to fabricate a powder−solid part.The microstructure of the powder−solid part was observed by scanning electron micros... The Ti−6Al−4V(TC4)alloy powder and forged solid were diffusion bonded by hot isostatic pressing(HIP)to fabricate a powder−solid part.The microstructure of the powder−solid part was observed by scanning electron microscope(SEM).The microhardness and tensile tests were conducted to investigate the mechanical properties.The results showed that the powder compact was near-fully dense,and the powder/solid interface was tight and complete.The microhardness of the interface was higher than that of the powder compact and solid.The fractures of all powder−solid tensile specimens were on the solid side rather than at the interface,which indicated that a good interfacial strength was obtained.The tensile strength and elongation of the powder compact were higher than those of the solid.It is concluded that the HIP process can successfully fabricate high-quality Ti−6Al−4V powder−solid parts,which provides a novel near net shape technology for titanium alloys. 展开更多
关键词 Ti−6Al−4V alloy powder/solid interface hot isostatic pressing diffusion bonding microstructure mechanical properties
下载PDF
Microstructure and mechanical properties of CuAgZn/GH909 diffusion bonded joint fabricated by hot isostatic pressing 被引量:1
3
作者 Yi XIAO li-hui lang Wen-cai XU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期475-484,共10页
The hot isostatic pressing-diffusion bonding(HIP-DB)was proposed to achieve the joining of CuAgZn and GH909 directly without an interlayer.The microstructure of joint was characterized by scanning electron microscope(... The hot isostatic pressing-diffusion bonding(HIP-DB)was proposed to achieve the joining of CuAgZn and GH909 directly without an interlayer.The microstructure of joint was characterized by scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and X-ray diffraction(XRD).The microhardness and shear strength were tested to investigate the mechanical properties of joint.The results showed that the interface was complete,and the joint was compact,uniform and free of unbonded defects.The maximum microhardness of joint was HV 443,higher than that of two base alloys,and the average shear strength of joint reached 172 MPa.It is concluded that a good metallurgical bonding between CuAgZn and GH909 can be obtained by HIP-DB with the process parameters of 700℃,150 MPa and 3 h. 展开更多
关键词 CuAgZn alloy GH909 superalloy diffusion bonding hot isostatic pressing
下载PDF
Influences of Hot-Isostatic-Pressing Temperature on the Microstructure, Tensile Properties and Tensile Fracture Mode of 2A12 Powder Compact 被引量:4
4
作者 Gang Wang li-hui lang +2 位作者 Wen-Jun Yu Xi-Na Huang Fei Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第10期963-974,共12页
2A12 aluminum alloy powders were hot-isostatic-pressed (HIPed) at representative temperatures for investi- gating the variation in microstructure, tensile property and fracture mode of the powder compact. It was fou... 2A12 aluminum alloy powders were hot-isostatic-pressed (HIPed) at representative temperatures for investi- gating the variation in microstructure, tensile property and fracture mode of the powder compact. It was found that the microstructure of raw powders changed from a dendrite structure to an equiaxed structure from room temperature to 600 ℃. The liquid phase produced by the eutectic reaction in the powder was gradually increased and finally formed a liquid pathway that ran through the entire powder from 490 to 600℃. Prior particle boundaries were observed in the powder compacts HIPed at 490 and 520℃. The liquid phase in the powder compacts was squeezed into the powder boundaries and the triple points of powder when HIPed at 580℃. However, the liquid phase located at the triple points of the powder was forced out and moved toward a small powder particle by HIP pressure under an HIPing temperature of 600℃, which led to a decrease in the mechanical properties and relative density. Better comprehensive properties were obtained at HIPing temperatures of 490 and 580℃. The low ductility exhibited by the P/M aluminum alloy HIPed at different temperatures was believed to arise from a combination of the existence of oxide film on the powder particle surface and the distribution characteristics of the liquid phase. Finally, three typical types of de-cohesion were classified. 展开更多
关键词 Powder metallurgy Hot-isostatic-pressing Microstructural evolution Fracture mode Aluminum alloy Mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部