MicroRNAs(miRNAs)play an important regulatory role in neuronal growth and development.Different mi RNAs target different genes to protect neurons in different ways,such as by avoiding apoptosis,preventing degeneration...MicroRNAs(miRNAs)play an important regulatory role in neuronal growth and development.Different mi RNAs target different genes to protect neurons in different ways,such as by avoiding apoptosis,preventing degeneration mediated by conditional mediators,preventing neuronal loss,weakening certain neurotoxic mechanisms,avoiding damage to neurons,and reducing inflammatory damage to them.The high expression of mi RNAs in the brain has significantly facilitated their development as protective targets for therapy,including neuroprotection and neuronal recovery.mi RNA is indispensable to the growth and development of neurons,and in turn,is beneficial for the development of the brain and checking the progression of various diseases of the nervous system.It can thus be used as an important therapeutic target for models of various diseases.This review provides an introduction to the protective effects of mi RNA on neurons in case of different diseases or damage models,and then provides reference values and reflections on the relevant treatments for the benefit of future research in the area.展开更多
Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right media...Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 k Da, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.展开更多
基金supported by the National Natural Science Foundation of China,No.81801208(to LSO)Science and Technology Program of Guangzhou,No.202102080053(to YF)+1 种基金Science and Technology Program of Guangzhou,No.202007030001(to YMT)Science and Technology Planning Project of Guangzhou,No.202102020027(to ZL)。
文摘MicroRNAs(miRNAs)play an important regulatory role in neuronal growth and development.Different mi RNAs target different genes to protect neurons in different ways,such as by avoiding apoptosis,preventing degeneration mediated by conditional mediators,preventing neuronal loss,weakening certain neurotoxic mechanisms,avoiding damage to neurons,and reducing inflammatory damage to them.The high expression of mi RNAs in the brain has significantly facilitated their development as protective targets for therapy,including neuroprotection and neuronal recovery.mi RNA is indispensable to the growth and development of neurons,and in turn,is beneficial for the development of the brain and checking the progression of various diseases of the nervous system.It can thus be used as an important therapeutic target for models of various diseases.This review provides an introduction to the protective effects of mi RNA on neurons in case of different diseases or damage models,and then provides reference values and reflections on the relevant treatments for the benefit of future research in the area.
基金supported by the National Natural Science Foundation of China,No.81471288
文摘Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 k Da, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.