AIM: In order to obtain lymphogenous metastasisassociated genes, we compared the transcriptional profiles of mouse hepatocarcinoma cell lines Hca-F with highly lymphatic metastasis potential and Hca-P with low lymphat...AIM: In order to obtain lymphogenous metastasisassociated genes, we compared the transcriptional profiles of mouse hepatocarcinoma cell lines Hca-F with highly lymphatic metastasis potential and Hca-P with low lymphatic metastasis potential.METHODS: Total RNA was isolated from Hca-F and Hca-P cells and synthesized into double-stranded cDNA. In vitro transcription double-stranded cDNA was labeled with biotin (i.e. biotin-labeled cRNA, used as the probe). The cRNA probes hybridized with Affymetrix GeneChip() MOE430A (containing 22 690 transcripts, including 14 500 known mouse genes and 4 371 ESTs) respectively and the signals were scanned by the GeneArray Scanner. The results were then analyzed by bioinformatics.RESULTS: Out of the 14 500 known genes investigated,110 (0.8%) were up regulated at least 23 fold. Among the total 4 371 ESTs, 17 ESTs (0.4%) (data were not presented) were up regulated at least 23 fold. According to the Gene Ontology and TreeView analysis, the 110genes were further classified into two groups: differential biological process profile and molecular function profile.CONCLUSION: Using high-throughput gene chip method,a large number of genes and their cellular functions about angiogenesis, cell adhesion, signal transduction, cell motility, transport, microtubule-based process, cytoskeleton organization and biogenesis, cell cycle, transcription,chaperone activity, motor activity, protein kinase activity,receptor binding and protein binding might be involved in the process of lymphatic metastasis and deserve to be used as potential candidates for further investigation.Cyclin D1, Fosl1, Hsp47, EGFR and AR, and Cav-1 are selected as the possible candidate genes of the metastatic phenotype, which need to be validated in later experiments.ESTs (data were not presented) might indicate novel genes associated with lymphatic metastasis. Validating the function of these genes is helpful to identify the key or candidate gene/pathway responsible for lymphatic metastasis, which might be used as the diagnostic markers and the therapeutic targets for lymphatic metastasis.展开更多
AIM: To screen genes differentially expressed in mouse hepatocarcinoma ascites cell line with high potential of lymphatic metastasis.METHODS: A subtracted cDNA library of mouse hepatocarcinoma cell line with high pote...AIM: To screen genes differentially expressed in mouse hepatocarcinoma ascites cell line with high potential of lymphatic metastasis.METHODS: A subtracted cDNA library of mouse hepatocarcinoma cell line with high potential of lymphatic metastatic Hca-F and its synogenetic cell line Hca-P with a low metastatic potential was constructed by suppression subtracted hybridization(SSH) method. The screened clones of the subtracted library were sequenced and GeneBank homology search was performed.RESULTS: Fourteen differentially expressed cDNA fragments of Hca-F were obtained with two novel genes.CONCLUSION: SSH is a useful technique to detect differentially expressioned genes and an effective method to clone novel genes.展开更多
基金Supported by the National Natural Science Foundation of China,No. 30371583
文摘AIM: In order to obtain lymphogenous metastasisassociated genes, we compared the transcriptional profiles of mouse hepatocarcinoma cell lines Hca-F with highly lymphatic metastasis potential and Hca-P with low lymphatic metastasis potential.METHODS: Total RNA was isolated from Hca-F and Hca-P cells and synthesized into double-stranded cDNA. In vitro transcription double-stranded cDNA was labeled with biotin (i.e. biotin-labeled cRNA, used as the probe). The cRNA probes hybridized with Affymetrix GeneChip() MOE430A (containing 22 690 transcripts, including 14 500 known mouse genes and 4 371 ESTs) respectively and the signals were scanned by the GeneArray Scanner. The results were then analyzed by bioinformatics.RESULTS: Out of the 14 500 known genes investigated,110 (0.8%) were up regulated at least 23 fold. Among the total 4 371 ESTs, 17 ESTs (0.4%) (data were not presented) were up regulated at least 23 fold. According to the Gene Ontology and TreeView analysis, the 110genes were further classified into two groups: differential biological process profile and molecular function profile.CONCLUSION: Using high-throughput gene chip method,a large number of genes and their cellular functions about angiogenesis, cell adhesion, signal transduction, cell motility, transport, microtubule-based process, cytoskeleton organization and biogenesis, cell cycle, transcription,chaperone activity, motor activity, protein kinase activity,receptor binding and protein binding might be involved in the process of lymphatic metastasis and deserve to be used as potential candidates for further investigation.Cyclin D1, Fosl1, Hsp47, EGFR and AR, and Cav-1 are selected as the possible candidate genes of the metastatic phenotype, which need to be validated in later experiments.ESTs (data were not presented) might indicate novel genes associated with lymphatic metastasis. Validating the function of these genes is helpful to identify the key or candidate gene/pathway responsible for lymphatic metastasis, which might be used as the diagnostic markers and the therapeutic targets for lymphatic metastasis.
基金Supported by National Natural Science Foundation of China, No.30371583
文摘AIM: To screen genes differentially expressed in mouse hepatocarcinoma ascites cell line with high potential of lymphatic metastasis.METHODS: A subtracted cDNA library of mouse hepatocarcinoma cell line with high potential of lymphatic metastatic Hca-F and its synogenetic cell line Hca-P with a low metastatic potential was constructed by suppression subtracted hybridization(SSH) method. The screened clones of the subtracted library were sequenced and GeneBank homology search was performed.RESULTS: Fourteen differentially expressed cDNA fragments of Hca-F were obtained with two novel genes.CONCLUSION: SSH is a useful technique to detect differentially expressioned genes and an effective method to clone novel genes.