It is an important means in management of improving both the quality and quantity of cultivated land to monitor grade changes in cultivated land quality. How to deploy monitoring network system and its point reasonabl...It is an important means in management of improving both the quality and quantity of cultivated land to monitor grade changes in cultivated land quality. How to deploy monitoring network system and its point reasonably and roundly are the key to the technology of monitoring grade changes in cultivated land quality by monitoring grade changes in cultivated land quality dynamically in order to obtain the information to the index of cultivated land quality and its changes based on the existing achievements of farmland classification and grading. Spatial analysis method is used to demarcate monitoring area and deploy monitoring point according to ARCGIS,of which the result can meet the demand for monitoring grade changes in cultivated land.展开更多
Successful regenerative medicine strategies of xenogeneic extracellular matrix need a synergistic balance among inflammation,fibrosis,and remodeling process.Adaptive macrophage subsets have been identified to modulate...Successful regenerative medicine strategies of xenogeneic extracellular matrix need a synergistic balance among inflammation,fibrosis,and remodeling process.Adaptive macrophage subsets have been identified to modulate inflammation and orchestrate the repair of neighboring parenchymal tissues.This study fabricated PPARγ-primed CD68+CD206+M2 phenotype(M2γ),and firstly verified their anti-inflammatory and tissue-regenerating roles in xenogeneic bioengineered organ regeneration.Our results showed that Th1-type CD3^(+)CD8^(+)T cell response to xenogeneic-dentin matrix-based bioengineered root complex(xeno-complex)was significantly inhibited by M2γmacrophage in vitro.PPARγactivation also timely recruited CD68^(+)CD206^(+)tissue macrophage polarization to xeno-complex in vivo.These subsets alleviated proinflammatory cytokines(TNF-α,IFN-γ)at the inflammation site and decreased CD3^(+)CD8^(+)T lymphocytes in the periphery system.When translated to an orthotopic nonhuman primate model,PPARγ-primed M2 macrophages immunosuppressed IL-1β,IL-6,TNF-α,MMPs to enable xeno-complex to effectively escape immune-mediated rejection and initiate graft-host synergistic integrity.These collective activities promoted the differentiation of odontoblast-like and periodontal-like cells to guide pulp-dentin and cementum-PDLs-bone regeneration and rescued partially injured odontogenesis such as DSPP and periostin expression.Finally,the regenerated root showed structure-biomechanical and functional equivalency to the native tooth.The timely conversion of M1-to-M2 macrophage mainly orchestrated odontogenesis,fibrogenesis,and osteogenesis,which represents a potential modulator for intact parenchymal-stromal tissue regeneration of targeted organs.展开更多
Wholly defined ex vivo expansion conditions for biliary tree stem cell(BTSC)organoids were established,consisting of a defined proliferative medium(DPM)used in combination with soft hyaluronan hydrogels.The DPM consis...Wholly defined ex vivo expansion conditions for biliary tree stem cell(BTSC)organoids were established,consisting of a defined proliferative medium(DPM)used in combination with soft hyaluronan hydrogels.The DPM consisted of commercially available Kubota's Medium(KM),to which a set of small molecules,particular paracrine signals,and heparan sulfate(HS)were added.The small molecules used were DNA methyltransferase inhibitor(RG108),TGF-βType I receptor inhibitor(A83-01),adenylate cyclase activator(Forskolin),and L-type Ca2+channel agonist(Bay K8644).A key paracrine signal proved to be R-spondin 1(RSPO1),a secreted protein that activates Wnts.Soluble hyaluronans,0.05%sodium hyaluronate,were used with DPM to expand monolayer cultures.Expansion of organoids was achieved by using DPM in combination with embedding organoids in Matrigel that was replaced with a defined thiol-hyaluronan triggered with PEGDA to form a hydrogel with a rheology[G*]of less than 100 Pa.The combination is called the BTSC-Expansion-Glycogel-System(BEX-gel system)for expanding BTSCs as a monolayer or as organoids.The BTSC organoids were expanded more than 3000-fold ex vivo in the BEX-gel system within 70 days while maintaining phenotypic traits indicative of stem/progenitors.Stem-cell-patch grafting of expanded BTSC organoids was performed on the livers of Fah-/-mice with tyrosinemia and resulted in the rescue of the mice and restoration of their normal liver functions.The BEX-gel system for BTSC organoid expansion provides a strategy to generate sufficient numbers of organoids for the therapeutic treatments of liver diseases.展开更多
文摘It is an important means in management of improving both the quality and quantity of cultivated land to monitor grade changes in cultivated land quality. How to deploy monitoring network system and its point reasonably and roundly are the key to the technology of monitoring grade changes in cultivated land quality by monitoring grade changes in cultivated land quality dynamically in order to obtain the information to the index of cultivated land quality and its changes based on the existing achievements of farmland classification and grading. Spatial analysis method is used to demarcate monitoring area and deploy monitoring point according to ARCGIS,of which the result can meet the demand for monitoring grade changes in cultivated land.
基金This work was supported by the National Key Research and Development Program of China(Nos.2017YFA0104800),Nature Science Foundation of China(31771062,31971281,81901001),Key Research and Development Program of Sichuan Province(2017SZ0031).
文摘Successful regenerative medicine strategies of xenogeneic extracellular matrix need a synergistic balance among inflammation,fibrosis,and remodeling process.Adaptive macrophage subsets have been identified to modulate inflammation and orchestrate the repair of neighboring parenchymal tissues.This study fabricated PPARγ-primed CD68+CD206+M2 phenotype(M2γ),and firstly verified their anti-inflammatory and tissue-regenerating roles in xenogeneic bioengineered organ regeneration.Our results showed that Th1-type CD3^(+)CD8^(+)T cell response to xenogeneic-dentin matrix-based bioengineered root complex(xeno-complex)was significantly inhibited by M2γmacrophage in vitro.PPARγactivation also timely recruited CD68^(+)CD206^(+)tissue macrophage polarization to xeno-complex in vivo.These subsets alleviated proinflammatory cytokines(TNF-α,IFN-γ)at the inflammation site and decreased CD3^(+)CD8^(+)T lymphocytes in the periphery system.When translated to an orthotopic nonhuman primate model,PPARγ-primed M2 macrophages immunosuppressed IL-1β,IL-6,TNF-α,MMPs to enable xeno-complex to effectively escape immune-mediated rejection and initiate graft-host synergistic integrity.These collective activities promoted the differentiation of odontoblast-like and periodontal-like cells to guide pulp-dentin and cementum-PDLs-bone regeneration and rescued partially injured odontogenesis such as DSPP and periostin expression.Finally,the regenerated root showed structure-biomechanical and functional equivalency to the native tooth.The timely conversion of M1-to-M2 macrophage mainly orchestrated odontogenesis,fibrogenesis,and osteogenesis,which represents a potential modulator for intact parenchymal-stromal tissue regeneration of targeted organs.
基金Major Program of National Key Research and Development Project(2020YFA0112600,2019YFA0801502)National Natural Science Foundation of China(82173019,82270638,8220374,82300718)+1 种基金Project of Shanghai Science and Technology Commission(22ZR1451100,22Y11908500)Peak Disciplines(Type IV)of Institutions of Higher Learning in Shanghai,and Shanghai Engineering Research Center of Stem Cells Translational Medicine(20DZ2255100).
文摘Wholly defined ex vivo expansion conditions for biliary tree stem cell(BTSC)organoids were established,consisting of a defined proliferative medium(DPM)used in combination with soft hyaluronan hydrogels.The DPM consisted of commercially available Kubota's Medium(KM),to which a set of small molecules,particular paracrine signals,and heparan sulfate(HS)were added.The small molecules used were DNA methyltransferase inhibitor(RG108),TGF-βType I receptor inhibitor(A83-01),adenylate cyclase activator(Forskolin),and L-type Ca2+channel agonist(Bay K8644).A key paracrine signal proved to be R-spondin 1(RSPO1),a secreted protein that activates Wnts.Soluble hyaluronans,0.05%sodium hyaluronate,were used with DPM to expand monolayer cultures.Expansion of organoids was achieved by using DPM in combination with embedding organoids in Matrigel that was replaced with a defined thiol-hyaluronan triggered with PEGDA to form a hydrogel with a rheology[G*]of less than 100 Pa.The combination is called the BTSC-Expansion-Glycogel-System(BEX-gel system)for expanding BTSCs as a monolayer or as organoids.The BTSC organoids were expanded more than 3000-fold ex vivo in the BEX-gel system within 70 days while maintaining phenotypic traits indicative of stem/progenitors.Stem-cell-patch grafting of expanded BTSC organoids was performed on the livers of Fah-/-mice with tyrosinemia and resulted in the rescue of the mice and restoration of their normal liver functions.The BEX-gel system for BTSC organoid expansion provides a strategy to generate sufficient numbers of organoids for the therapeutic treatments of liver diseases.