期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Global land 1° mapping dataset of XCO_(2) from satellite observations of GOSAT and OCO-2 from 2009 to 2020 被引量:2
1
作者 Mengya Sheng liping lei +3 位作者 Zhao-Cheng Zeng Weiqiang Rao Hao Songd Changjiang Wu 《Big Earth Data》 EI CSCD 2023年第1期170-190,共21页
A global mapping data of atmospheric carbon dioxide(CO_(2))concen-trations can help us to better understand the spatiotemporal varia-tions of CO_(2) and the driving factors of the variations to support the actions for... A global mapping data of atmospheric carbon dioxide(CO_(2))concen-trations can help us to better understand the spatiotemporal varia-tions of CO_(2) and the driving factors of the variations to support the actions for emissions reduction and control.Greenhouse gases satel-lites that measure atmospheric CO_(2),such as the Greenhouse Gases Observing Satellite(GOSAT)and Orbiting Carbon Observatory(OCO-2),have been providing global observations of the column averaged dry-air mole fractions of CO_(2)(XCO_(2))since 2009.However,these XCO_(2) retrievals are irregular in space and time with many gaps.In this paper,we mapped a global spatiotemporally continuous XCO_(2) data-set(Mapping-XCO_(2))using the XCO_(2) retrievals from GOSAT and OCO-2 during the period from April 2009 to December 2020 based on a geostatistical approach that fills those data gaps.The dataset covers a geographic range from 56°S to 65°N and 169°W to 180°E for a 1°grid interval in space and 3-day time interval.The uncer-tainties of the mapped XCO_(2) values are generally less than 1.5 parts per million(ppm).The spatiotemporal characteristics of global XCO_(2) that are revealed by the Mapping-XCO_(2) are similar to the model data obtained from CarbonTracker.Compared to the ground observa-tions,the overall standard bias is 1.13 ppm.The results indicate that this long-term Mapping-XCO_(2) dataset can be used to investigate the spatiotemporal variations of global atmospheric XCO_(2) and can support studies related to the carbon cycle and anthropogenic CO_(2) emissions.The dataset is available at http://www.doi.org/10.7910/DVN/4WDTD8 and https://www.scidb.cn/en/detail?dataSetId=c2c3111b421043fc8d9b163c39e6f56e. 展开更多
关键词 Global land mapping atmospheric CO_(2)column concentration satellite observation GOSAT OCO-2
原文传递
China's sizeable and uncertain carbon sink: a perspective from GOSAT 被引量:6
2
作者 Li Zhang Jingfeng Xiao +2 位作者 Li Li liping lei Jing Li 《Chinese Science Bulletin》 SCIE EI CAS 2014年第14期1547-1555,共9页
Despite the agreement that China’s terrestrial ecosystems can provide a carbon sink and offset carbon dioxide(CO2)emissions from fossil fuels,the magnitude and spatial distribution of the sink remain uncertain.Accura... Despite the agreement that China’s terrestrial ecosystems can provide a carbon sink and offset carbon dioxide(CO2)emissions from fossil fuels,the magnitude and spatial distribution of the sink remain uncertain.Accurate quantification of the carbon sequestration capacity of China’s terrestrial ecosystems has profound scientific and policy implications.Here,we report on the magnitude and patterns of China’s terrestrial carbon sink using the global monthly CO2flux data product from the Greenhouse gases Observing SATellite(GOSAT),the world’s first satellite dedicated to global greenhouse gas observation.We use the first year’s data from GOSAT(June 2009–May2010)that are currently available to assess China’s biospheric carbon fluxes.Our results show that China’s terrestrial ecosystems provide a carbon sink of-0.21 Pg C a-1.The consumption of fossil fuels in China leads to carbon dioxide emissions of 1.90 Pg C a-1into the atmosphere,approximately 11.1%of which is offset by China’s terrestrial ecosystems.China’s terrestrial ecosystems play a significant role in offsetting fossil fuel emissions and slowing down the buildup of CO2in the atmosphere.Our analysis based on GOSAT data offers a new perspective on the magnitude and distribution of China’s carbon sink.Our results show that China’s terrestrial ecosystems provide a sizeable and uncertain carbon sink,and further research is needed to reduce the uncertainty in its magnitude and distribution. 展开更多
关键词 二氧化碳 中国 陆地生态系统 CO2通量 化石燃料 观测卫星 温室气体 排放量
原文传递
Spatial distribution and inducement of collapsed buildings in Yushu earthquake based on remote sensing analysis 被引量:5
3
作者 HuaDong Guo Bing Zhang +2 位作者 liping lei Li Zhang Yu Chen 《Science China Earth Sciences》 SCIE EI CAS 2010年第6期794-796,共3页
At 7:49 a.m. on April 14th, 2010, an earthquake of 7.1 on the Richter scale occurred in Yushu County, Yushu Tibetan Autonomous Prefecture in Qinghai Province. There was great loss of property and life.
关键词 houses collapse Tibetan DAMAGES QINGHAI RICHTER QUAKE rupture FOUNDATIONS disaster
原文传递
Dynamic analysis of the Wenchuan Earthquake disaster and reconstruction with 3-year remote sensing data 被引量:6
4
作者 Huadong Guo Liangyun Liu +5 位作者 liping lei Yanhong Wu Liwei Li Bing Zhang Zhengli Zuo Zhen Li 《International Journal of Digital Earth》 SCIE 2010年第4期355-364,共10页
Earth observation is an effective technique that plays an important role in earthquake damage reduction and reconstruction.This paper introduces the results of dynamic analysis on monitoring and assessing heavily impa... Earth observation is an effective technique that plays an important role in earthquake damage reduction and reconstruction.This paper introduces the results of dynamic analysis on monitoring and assessing heavily impacted areas affected by the Wenchuan Earthquake using remote sensing data acquired in the past 3 years from 2008 to 2010.Immediately after the disaster on 12 May 2008,the Chinese Academy of Sciences launched a project entitled‘Wenchuan Earthquake Disasters Monitoring and Assessment Using Remote Sensing Technology.’More than 400 images from 17 satellites and 20.2TB airborne remote sensing data were acquired to facilitate quick monitoring and evaluation of severely damaged areas in 14 counties.Results of the image analyses were forwarded on a timely basis to assist with consultative service and decisionmaking support.In subsequent years,in order to monitor the process of environmental restoration and reconstruction,airborne optical remote sensing images covering most of the severely damaged areas were again acquired in May 2009 and April 2010.These images were analyzed and compared along with images from 2008.Results were useful in support of further work on environmental protection and reconstruction in earthquake-damaged areas.Three typical areas were selected for illustrative purposes including Tangjiashan Barrier Lake,Beichuan County,and counties of Yingxiu and the new Beichuan.These results well demonstrate the importance and effectiveness of the utility of earth observation for disaster mitigation and reconstruction. 展开更多
关键词 Wenchuan Earthquake earth observation disaster mitigation RECONSTRUCTION
原文传递
Global land mapping of satellite-observed CO_(2)total columns using spatio-temporal geostatistics 被引量:3
5
作者 Zhao-Cheng Zeng liping lei +18 位作者 Kimberly Strong Dylan B.A.Jones Lijie Guo Min Liu Feng Deng Nicholas M.Deutscher Manvendra K.Dubey David W.T.Griffith Frank Hase Bradley Henderson Rigel Kivi Rodica Lindenmaier Isamu Morino Hirofumi Ohyama Christof Petri Ralf Sussmann Voltaire A.Velazco Paul O.Wennberg Hui Lin 《International Journal of Digital Earth》 SCIE EI 2017年第4期426-456,共31页
This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO_(2)total column(XCO_(2))using spatio-temporal geostatistics,which makes full use of the joint spatial an... This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO_(2)total column(XCO_(2))using spatio-temporal geostatistics,which makes full use of the joint spatial and temporal dependencies between observations.The mapping approach considers the latitude-zonal seasonal cycles and spatio-temporal correlation structure of XCO_(2),and obtains global land maps of XCO_(2),with a spatial grid resolution of 1°latitude by 1°longitude and temporal resolution of 3 days.We evaluate the accuracy and uncertainty of the mapping dataset in the following three ways:(1)in cross-validation,the mapping approach results in a high correlation coefficient of 0.94 between the predictions and observations,(2)in comparison with ground truth provided by the Total Carbon Column Observing Network(TCCON),the predicted XCO_(2)time series and those from TCCON sites are in good agreement,with an overall bias of 0.01 ppm and a standard deviation of the difference of 1.22 ppm and(3)in comparison with model simulations,the spatio-temporal variability of XCO_(2)between the mapping dataset and simulations from the CT2013 and GEOS-Chem are generally consistent.The generated mapping XCO_(2)data in this study provides a new global geospatial dataset in global understanding of greenhouse gases dynamics and global warming. 展开更多
关键词 XCO_(2) ACOS-GOSAT Spatio-temporal geostatistics global mapping geospatial dataset
原文传递
Specific patterns of XC02 observed by GOSAT during 2009-2016and assessed with model simulations over China 被引量:2
6
作者 Nian BIE liping lei +4 位作者 Zhonghua HE Zhaocheng ZENG Liangyun LIU Bing ZHANG Bofeng CAI 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第3期384-394,共11页
Spatiotemporal patterns of column-averaged dry air mole fraction of CO2(XCO2)have not been well characterized on a regional scale due to limitations in data availability and precision.This paper addresses these issues... Spatiotemporal patterns of column-averaged dry air mole fraction of CO2(XCO2)have not been well characterized on a regional scale due to limitations in data availability and precision.This paper addresses these issues by examining such patterns in China using the long-term mapping XCO2 dataset(2009-2016)derived from the Greenhouse gases Observing SATellite(GOSAT).XCO2 simulations are also constructed using the high-resolution nested-grid GEOS-Chem model.The following results are found:Firstly,the correlation coefficient between the anthropogenic emissions and XCO2 spatial distribution is nearly zero in summer but up to 0.32 in autumn.Secondly,on average,XCO2 increases by 2.08 ppm every year from2010 to 2015,with a sharp increase of 2.6 ppm in 2013.Lastly,in the analysis of three typical regions,the GOSAT XCO2 time series is inbetter agreement with the GEOS-Chem simulation of XCO2 in the Taklimakan Desert region(the least difference with bias 0.65±0.78 ppm),compared with the northern urban agglomerationregion(-1.3±1.2 ppm)and the northeastern forest region(-1.4±1.4 ppm).The results are likely attributable to uncertainty in both the satellite-retrieved XCO2 data and the model simulation data. 展开更多
关键词 GEOS-CHEM GOSAT OCO-2 Specific pattern XCO2
原文传递
Feasibility and physics potential of detecting ^(8)B solar neutrinos at JUNO 被引量:1
7
作者 Angel Abusleme Thomas Adam +590 位作者 Shakeel Ahmad Sebastiano Aiello Muhammad Akram Nawab Ali Fengpeng An Guangpeng An Qi An Giuseppe Andronico Nikolay Anfimov Vito Antonelli Tatiana Antoshkina Burin Asavapibhop João Pedro Athayde Marcondes de André Didier Auguste Andrej Babic Wander Baldini Andrea Barresi Eric Baussan Marco Bellato Antonio Bergnoli Enrico Bernieri David Biare Thilo Birkenfeld Sylvie Blin David Blum Simon Blyth Anastasia Bolshakova Mathieu Bongrand Clément Bordereau Dominique Breton Augusto Brigatti Riccardo Brugnera Riccardo Bruno Antonio Budano Max Buesken Mario Buscemi Jose Busto Ilya Butorov Anatael Cabrera Hao Cai Xiao Cai Yanke Cai Zhiyan Cai Antonio Cammi Agustin Campeny Chuanya Cao Guofu Cao Jun Cao Rossella Caruso Cédric Cerna Jinfan Chang Yun Chang Pingping Chen Po-An Chen Shaomin Chen Shenjian Chen Xurong Chen Yi-Wen Chen Yixue Chen Yu Chen Zhang Chen Jie Cheng Yaping Cheng Alexander Chepurnov Davide Chiesa Pietro Chimenti Artem Chukanov Anna Chuvashova Gérard Claverie Catia Clementi Barbara Clerbaux Selma Conforti Di Lorenzo Daniele Corti Salvatore Costa Flavio Dal Corso Christophe De La Taille Jiawei Deng Zhi Deng Ziyan Deng Wilfried Depnering Marco Diaz Xuefeng Ding Yayun Ding Bayu Dirgantara Sergey Dmitrievsky Tadeas Dohnal Georgy Donchenko Jianmeng Dong Damien Dornic Evgeny Doroshkevich Marcos Dracos Frédéric Druillole Shuxian Du Stefano Dusini Martin Dvorak Timo Enqvist Heike Enzmann Andrea Fabbri Lukas Fajt Donghua Fan lei Fan Can Fang Jian Fang Marco Fargetta Anna Fatkina Dmitry Fedoseev Vladko Fekete Li-Cheng Feng Qichun Feng Richard Ford Andrey Formozov Amélie Fournier Haonan Gan Feng Gao Alberto Garfagnini Alexandre Göttel Christoph Genster Marco Giammarchi Agnese Giaz Nunzio Giudice Franco Giuliani Maxim Gonchar Guanghua Gong Hui Gong Oleg Gorchakov Yuri Gornushkin Marco Grassi Christian Grewing Maxim Gromov Vasily Gromov Minghao Gu Xiaofei Gu Yu Gu Mengyun Guan Nunzio Guardone Maria Gul Cong Guo Jingyuan Guo Wanlei Guo Xinheng Guo Yuhang Guo Paul Hackspacher Caren Hagner Ran Han Yang Han Miao He Wei He Tobias Heinz Patrick Hellmuth Yuekun Heng Rafael Herrera Daojin Hong YuenKeung Hor Shaojing Hou Yee Hsiung Bei-Zhen Hu Hang Hu Jianrun Hu Jun Hu Shouyang Hu Tao Hu Zhuojun Hu Chunhao Huang Guihong Huang Hanxiong Huang Qinhua Huang Wenhao Huang Xingtao Huang Yongbo Huang Jiaqi Hui Wenju Huo Cédric Huss Safeer Hussain Antonio Insolia Ara Ioannisian Daniel Ioannisyan Roberto Isocrate Kuo-Lun Jen Xiaolu Ji Xingzhao Ji Huihui Jia Junji Jia Siyu Jian Di Jiang Xiaoshan Jiang Ruyi Jin Xiaoping Jing Cécile Jollet Jari Joutsenvaara Sirichok Jungthawan Leonidas Kalousis Philipp Kampmann Li Kang Michael Karagounis Narine Kazarian Amir Khan Waseem Khan Khanchai Khosonthongkee Patrick Kinz Denis Korablev Konstantin Kouzakov Alexey Krasnoperov Svetlana Krokhaleva Zinovy Krumshteyn Andre Kruth Nikolay Kutovskiy Pasi Kuusiniemi Tobias Lachenmaier Cecilia Landini Sébastien Leblanc Frederic Lefevre liping lei Ruiting lei Rupert leitner Jason Leung Demin Li Fei Li Fule Li Haitao Li Huiling Li Jiaqi Li Jin Li Kaijie Li Mengzhao Li Nan Li Nan Li Qingjiang Li Ruhui Li Shanfeng Li Shuaijie Li Tao Li Weidong Li Weiguo Li Xiaomei Li Xiaonan Li Xinglong Li Yi Li Yufeng Li Zhibing Li Ziyuan Li Hao Liang Hao Liang Jingjing Liang Jiajun Liao Daniel Liebau Ayut Limphirat Sukit Limpijumnong Guey-Lin Lin Shengxin Lin Tao Lin Jiajie Ling Ivano Lippi Fang Liu Haidong Liu Hongbang Liu Hongjuan Liu Hongtao Liu Hu Liu Hui Liu Jianglai Liu Jinchang Liu Min Liu Qian Liu Qin Liu Runxuan Liu Shuangyu Liu Shubin Liu Shulin Liu Xiaowei Liu Yan Liu Alexey Lokhov Paolo Lombardi Claudio Lombardo Kai Loo Chuan Lu Haoqi Lu Jingbin Lu Junguang Lu Shuxiang Lu Xiaoxu Lu Bayarto Lubsandorzhiev Sultim Lubsandorzhiev Livia Ludhova Fengjiao Luo Guang Luo Pengwei Luo Shu Luo Wuming Luo Vladimir Lyashuk Qiumei Ma Si Ma Xiaoyan Ma Xubo Ma Jihane Maalmi Yury Malyshkin Fabio Mantovani Francesco Manzali Xin Mao Yajun Mao Stefano MMari Filippo Marini Sadia Marium Cristina Martellini Gisele Martin-Chassard Agnese Martini Davit Mayilyan Axel Müller Ints Mednieks Yue Meng Anselmo Meregaglia Emanuela Meroni David Meyhöfer Mauro Mezzetto Jonathan Miller Lino Miramonti Salvatore Monforte Paolo Montini Michele Montuschi Nikolay Morozov Pavithra Muralidharan Massimiliano Nastasi Dmitry VNaumov Elena Naumova Igor Nemchenok Alexey Nikolaev Feipeng Ning Zhe Ning Hiroshi Nunokawa Lothar Oberauer Juan Pedro Ochoa-Ricoux Alexander Olshevskiy Domizia Orestano Fausto Ortica Hsiao-Ru Pan Alessandro Paoloni Nina Parkalian Sergio Parmeggiano Teerapat Payupol Yatian Pei Nicomede Pelliccia Anguo Peng Haiping Peng Frédéric Perrot Pierre-Alexandre Petitjean Fabrizio Petrucci Luis Felipe Piñeres Rico Oliver Pilarczyk Artyom Popov Pascal Poussot Wathan Pratumwan Ezio Previtali Fazhi Qi Ming Qi Sen Qian Xiaohui Qian Hao Qiao Zhonghua Qin Shoukang Qiu Muhammad Rajput Gioacchino Ranucci Neill Raper Alessandra Re Henning Rebber Abdel Rebii Bin Ren Jie Ren Taras Rezinko Barbara Ricci Markus Robens Mathieu Roche Narongkiat Rodphai Aldo Romani Bedřich Roskovec Christian Roth Xiangdong Ruan Xichao Ruan Saroj Rujirawat Arseniy Rybnikov Andrey Sadovsky Paolo Saggese Giuseppe Salamanna Simone Sanfilippo Anut Sangka Nuanwan Sanguansak Utane Sawangwit Julia Sawatzki Fatma Sawy Michaela Schever Jacky Schuler Cédric Schwab Konstantin Schweizer Dmitry Selivanov Alexandr Selyunin Andrea Serafini Giulio Settanta Mariangela Settimo Muhammad Shahzad Vladislav Sharov Gang Shi Jingyan Shi Yongjiu Shi Vitaly Shutov Andrey Sidorenkov FedorŠimkovic Chiara Sirignano Jaruchit Siripak Monica Sisti Maciej Slupecki Mikhail Smirnov Oleg Smirnov Thiago Sogo-Bezerra Julanan Songwadhana Boonrucksar Soonthornthum Albert Sotnikov Ondrej Sramek Warintorn Sreethawong Achim Stahl Luca Stanco Konstantin Stankevich DušanŠtefánik Hans Steiger Jochen Steinmann Tobias Sterr Matthias Raphael Stock Virginia Strati Alexander Studenikin Gongxing Sun Shifeng Sun Xilei Sun Yongjie Sun Yongzhao Sun Narumon Suwonjandee Michal Szelezniak Jian Tang Qiang Tang Quan Tang Xiao Tang Alexander Tietzsch Igor Tkachev Tomas Tmej Konstantin Treskov Andrea Triossi Giancarlo Troni Wladyslaw Trzaska Cristina Tuve Stefan van Waasen Johannes van den Boom Guillaume Vanroyen Nikolaos Vassilopoulos Vadim Vedin Giuseppe Verde Maxim Vialkov Benoit Viaud Cristina Volpe Vit Vorobel Lucia Votano Pablo Walker Caishen Wang Chung-Hsiang Wang En Wang Guoli Wang Jian Wang Jun Wang Kunyu Wang Lu Wang Meifen Wang Meng Wang Ruiguang Wang Siguang Wang Wei Wang Wenshuai Wang Xi Wang Xiangyue Wang Yangfu Wang Yaoguang Wang Yi Wang Yifang Wang Yuanqing Wang Yuman Wang Zhe Wang Zheng Wang Zhimin Wang Zongyi Wang Apimook Watcharangkool Lianghong Wei Wei Wei Yadong Wei Liangjian Wen Christopher Wiebusch Steven Chan-Fai Wong Bjoern Wonsak Diru Wu Fangliang Wu Qun Wu Wenjie Wu Zhi Wu Michael Wurm Jacques Wurtz Christian Wysotzki Yufei Xi Dongmei Xia Yuguang Xie Zhangquan Xie Zhizhong Xing Benda Xu Donglian Xu Fanrong Xu Jilei Xu Jing Xu Meihang Xu Yin Xu Yu Xu Baojun Yan Xiongbo Yan Yupeng Yan Anbo Yang Changgen Yang Huan Yang Jie Yang lei Yang Xiaoyu Yang Yifan Yang Haifeng Yao Zafar Yasin Jiaxuan Ye Mei Ye Ugur Yegin Frédéric Yermia Peihuai Yi Xiangwei Yin Zhengyun You Boxiang Yu Chiye Yu Chunxu Yu Hongzhao Yu Miao Yu Xianghui Yu Zeyuan Yu Chengzhuo Yuan Ying Yuan Zhenxiong Yuan Ziyi Yuan Baobiao Yue Noman Zafar Andre Zambanini Pan Zeng Shan Zeng Tingxuan Zeng Yuda Zeng Liang Zhan Feiyang Zhang Guoqing Zhang Haiqiong Zhang Honghao Zhang Jiawen Zhang Jie Zhang Jingbo Zhang Peng Zhang Qingmin Zhang Shiqi Zhang Tao Zhang Xiaomei Zhang Xuantong Zhang Yan Zhang Yinhong Zhang Yiyu Zhang Yongpeng Zhang Yuanyuan Zhang Yumei Zhang Zhenyu Zhang Zhijian Zhang Fengyi Zhao Jie Zhao Rong Zhao Shujun Zhao Tianchi Zhao Dongqin Zheng Hua Zheng Minshan Zheng Yangheng Zheng Weirong Zhong Jing Zhou Li Zhou Nan Zhou Shun Zhou Xiang Zhou Jiang Zhu Kejun Zhu Honglin Zhuang Liang Zong Jiaheng Zou 《Chinese Physics C》 SCIE CAS CSCD 2021年第2期93-110,共18页
The Jiangmen Underground Neutrino Observatory(JUNO)features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector.Some of JUNO's features make it an excellent location for^8B solar neut... The Jiangmen Underground Neutrino Observatory(JUNO)features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector.Some of JUNO's features make it an excellent location for^8B solar neutrino measurements,such as its low-energy threshold,high energy resolution compared with water Cherenkov detectors,and much larger target mass compared with previous liquid scintillator detectors.In this paper,we present a comprehensive assessment of JUNO's potential for detecting^8B solar neutrinos via the neutrino-electron elastic scattering process.A reduced 2 MeV threshold for the recoil electron energy is found to be achievable,assuming that the intrinsic radioactive background^(238)U and^(232)Th in the liquid scintillator can be controlled to 10^(-17)g/g.With ten years of data acquisition,approximately 60,000 signal and 30,000 background events are expected.This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter,which will shed new light on the inconsistency between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework.IfDelta m^(2)_(21)=4.8times10^(-5);(7.5times10^(-5))eV^(2),JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3sigma(2sigma)level by measuring the non-zero signal rate variation with respect to the solar zenith angle.Moreover,JUNO can simultaneously measureDelta m^2_(21)using^8B solar neutrinos to a precision of 20% or better,depending on the central value,and to sub-percent precision using reactor antineutrinos.A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of Delta m^2_(21)reported by solar neutrino experiments and the KamLAND experiment. 展开更多
关键词 neutrino oscillation solar neutrino JUNO
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部