Unexpected facture without any room-temperature plasticity severely limits potential structural applications of bulk metallic glasses (BMGs), especially La-, Mg- and Fe-based ones. In this study, a simple free corro...Unexpected facture without any room-temperature plasticity severely limits potential structural applications of bulk metallic glasses (BMGs), especially La-, Mg- and Fe-based ones. In this study, a simple free corrosion method was provided to improve the plasticity of a brittle (La, Ce)-based BMG by the introduction of high-density corrosion defects on the surface. The influences of immersing time in 0.1 mol/L H2SO4 aqueous solution on the surface morphology and mechanical properties of the BMG were evaluated. With increasing immersing time from 5 to 30 min, the degree of surface corrosion increased obviously, and the distribution of corrosion defects became more homogenous. In the samples, the yielding phenomenon and certain plasticity appeared up to 0.3% after the surface treatment. The yielding and plasticity can be attributed to easier nucleation of shear bands on the defect surface rather than on the glabrous surface. The results provided a novel method to improve the plasticity of BMGs.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51131002 and51301196)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(No.142008)+1 种基金the Fundamental Research Funds for the Central Universities(No.YWF-15-CLXY-002)the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry
文摘Unexpected facture without any room-temperature plasticity severely limits potential structural applications of bulk metallic glasses (BMGs), especially La-, Mg- and Fe-based ones. In this study, a simple free corrosion method was provided to improve the plasticity of a brittle (La, Ce)-based BMG by the introduction of high-density corrosion defects on the surface. The influences of immersing time in 0.1 mol/L H2SO4 aqueous solution on the surface morphology and mechanical properties of the BMG were evaluated. With increasing immersing time from 5 to 30 min, the degree of surface corrosion increased obviously, and the distribution of corrosion defects became more homogenous. In the samples, the yielding phenomenon and certain plasticity appeared up to 0.3% after the surface treatment. The yielding and plasticity can be attributed to easier nucleation of shear bands on the defect surface rather than on the glabrous surface. The results provided a novel method to improve the plasticity of BMGs.