Outbreaks of both influenza virus and the novel coronavirus SARS-CoV-2 are serious threats to human health and life. It is very important to establish a rapid, accurate test with large-scale detection potential to pre...Outbreaks of both influenza virus and the novel coronavirus SARS-CoV-2 are serious threats to human health and life. It is very important to establish a rapid, accurate test with large-scale detection potential to prevent the further spread of the epidemic. An optimized RPA-Cas12a-based platform combined with digital microfluidics(DMF), the RCD platform, was established to achieve the automated, rapid detection of influenza viruses and SARS-CoV-2. The probe in the RPA-Cas12a system was optimized to produce maximal fluorescence to increase the amplification signal. The reaction droplets in the platform were all at the microliter level and the detection could be accomplished within 30 min due to the effective mixing of droplets by digital microfluidic technology. The whole process from amplification to recognition is completed in the chip, which reduces the risk of aerosol contamination. One chip can contain multiple detection reaction areas, offering the potential for customized detection.The RCD platform demonstrated a high level of sensitivity, specificity(no false positives or negatives), speed(≤30 min),automation and multiplexing. We also used the RCD platform to detect nucleic acids from influenza patients and COVID-19 patients. The results were consistent with the findings of q PCR. The RCD platform is a one-step, rapid, highly sensitive and specific method with the advantages of digital microfluidic technology, which circumvents the shortcomings of manual operation. The development of the RCD platform provides potential for the isothermal automatic detection of nucleic acids during epidemics.展开更多
基金supported by the Science and Technology Program of Fujian Province (2018Y4013 to B.-A.L.)the Science and Technology Project of Xiamen Science and Technology Bureau (3502Z20193023 to B.-A.L.)+4 种基金the Health-Education Joint Research Project of Fujian Province (2019-WJ-34 to B.-A.L. and Z.-M.Z)the COVID-19 Emergency Research Project of Xiamen Science and Technology Bureau (3502Z2020YJ21 to Bio Detect (Xiamen) Biotechnology Co., Ltd.)the COVID-19 Emergency Research Project of Xiamen University (X2106103 to B.-A.L.)the National Natural Science Foundation of China (U1705284, 81972458, and 81772958 to B.-A.L.)Project 111 sponsored by the State Bureau of Foreign Experts and Ministry of Education (B06016)。
文摘Outbreaks of both influenza virus and the novel coronavirus SARS-CoV-2 are serious threats to human health and life. It is very important to establish a rapid, accurate test with large-scale detection potential to prevent the further spread of the epidemic. An optimized RPA-Cas12a-based platform combined with digital microfluidics(DMF), the RCD platform, was established to achieve the automated, rapid detection of influenza viruses and SARS-CoV-2. The probe in the RPA-Cas12a system was optimized to produce maximal fluorescence to increase the amplification signal. The reaction droplets in the platform were all at the microliter level and the detection could be accomplished within 30 min due to the effective mixing of droplets by digital microfluidic technology. The whole process from amplification to recognition is completed in the chip, which reduces the risk of aerosol contamination. One chip can contain multiple detection reaction areas, offering the potential for customized detection.The RCD platform demonstrated a high level of sensitivity, specificity(no false positives or negatives), speed(≤30 min),automation and multiplexing. We also used the RCD platform to detect nucleic acids from influenza patients and COVID-19 patients. The results were consistent with the findings of q PCR. The RCD platform is a one-step, rapid, highly sensitive and specific method with the advantages of digital microfluidic technology, which circumvents the shortcomings of manual operation. The development of the RCD platform provides potential for the isothermal automatic detection of nucleic acids during epidemics.