期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer 被引量:8
1
作者 Haipeng Li liancheng sun +3 位作者 Yongguang Zhang Taizhe Tan Gongkai Wang Zhumabay Bakenov 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1276-1281,共6页
The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great co... The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great concern with a great number of publications dedicated to its mitigation. In this contribution, a three-dimensional(3D) reduced graphene oxide/activated carbon(RGO/AC) film, synthesized by a simple hydrothermal method and convenient mechanical pressing, is sandwiched between the separator and the sulfur-based cathode, acting as a functional interlayer to capture and trap polysulfide species. Consequently, the Li/S cell with this interlayer shows an impressive initial discharge capacity of 1078 m Ah/g and a reversible capacity of 655 m Ah/g even after 100 cycles. The RGO/AC interlayer impedes the movement of polysulfide while providing unimpeded channels for lithium ion mass transfer. Therefore, the RGO/AC interlayer with a well-designed structure represents strong potential for high-performance Li/S batteries. 展开更多
关键词 Lithium/sulfur battery Shuttle effect Functional interlayer Reduced graphene oxide/activated carbon composite
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部