臭氧是一种环境友好型氧化剂,可直接用于消毒、杀菌和废水处理,对于维护和促进公共卫生安全至关重要.由于臭氧容易分解,不利于储存,因此需要现制即用.目前臭氧生成技术主要包括:电晕放电法和电催化臭氧生产(EOP)技术.相较于电晕放电法,...臭氧是一种环境友好型氧化剂,可直接用于消毒、杀菌和废水处理,对于维护和促进公共卫生安全至关重要.由于臭氧容易分解,不利于储存,因此需要现制即用.目前臭氧生成技术主要包括:电晕放电法和电催化臭氧生产(EOP)技术.相较于电晕放电法,EOP是一种本质安全的臭氧生产技术.然而,该工艺相较于电晕放电技术电能消耗量大,为了使其更具商业可行性,有必要开发高活性且低成本的电催化剂.此外,合理的电解槽设计对于实现高效EOP过程也至关重要.然而,目前研究主要集中在提高EOP催化剂活性方面,对电解槽的结构设计优化的关注较少.本文通过开发高效电催化剂进而将其应用于结构优化后的电解槽中,实现了更加高效的EOP过程.本文采用水热方法成功制备了一种具有较高EOP活性的方形氧化铅(PbO_(x)-CTAB-120)电催化剂.在标准三电极测试系统中,电流密度为50 mA cm^(-2)的测试条件下,法拉第效率(FE)可达20.7%,与商用β-PbO_(2)(17.1%)相比提高了21.1%.此外,设计了具有平行流场的可视化EOP电解槽,该可视化电解槽在传质和传热方面具有明显优势,有利于实现更加高效的EOP过程.将催化剂PbO_(x)-CTAB-120组装至可视化电解槽中,在1.0 A cm^(-2)的测试电流密度下,电解液为超纯水,该体系气态臭氧产量可以达到588 mg h^(-1)g^(-1)catalyst,比能量消耗(PEOP)为56 Wh g^(-1)gaseous ozone.体系臭氧产量约为商用β-PbO_(2)在传统电解槽中产量的2倍,并且PEOP降低率超过62%.原位18O同位素标记差分电化学质谱和密度泛函理论计算结果表明,PbO_(x)-CTAB-120电催化剂在EOP过程中遵循晶格氧机理路径,晶格氧迁移产生的氧空位能有效稳定OOH^(*)和O_(2)^(*)反应中间体,因此有利于催化剂在EOP过程中保持较好的反应活性和稳定性.同时,还利用先进的高速摄像可视化工具和计算流体力学(CFD)仿真模拟研究了平行流场EOP电解槽的运行过程和高效传质传热的原理.CFD模拟结果表明,与传统流场模型相比,平行流场对应的出口气泡停留时间更长,说明平行流场更有利于产物气泡从出口逸出,即气泡容易快速扩散,与实验结果一致.因此,PbO_(x)-CTAB-120电催化剂与新型可视化电解槽相结合,有助于在超纯水中实现较好的气态臭氧产率和较低比能耗.此外,二者的结合充分发挥了电催化剂的EOP活性和电解槽的传质特性所带来的优势,实现了反应性和传输性的协同增强,从而极大促进了原位有机污染物降解效率.综上所述,本文在制备高效阳极催化剂的基础上,同时利用优化电解槽结构实现了提升臭氧产率和降低过程能耗,为高活性电催化剂与优化的电解槽耦合以实现高效EOP过程及其有效应用提供参考.展开更多
Background This study presents a neural hand reconstruction method for monocular 3D hand pose and shape estimation.Methods Alternate to directly representing hand with 3D data,a novel UV position map is used to repres...Background This study presents a neural hand reconstruction method for monocular 3D hand pose and shape estimation.Methods Alternate to directly representing hand with 3D data,a novel UV position map is used to represent a hand pose and shape with 2D data that maps 3D hand surface points to 2D image space.Furthermore,an encoder-decoder neural network is proposed to infer such UV position map from a single image.To train this network with inadequate ground truth training pairs,we propose a novel MANOReg module that employs MANO model as a prior shape to constrain high dimensional space of the UV position map.Results The quantitative and qualitative experiments demonstrate the effectiveness of our UV position map representation and MANOReg module.展开更多
BACKGROUND D2 lymph node dissection for advanced gastric cancer is advocated,and station 8p lymph node should be considered in selected patients,which is,however,technically difficult.AIM To introduce a new and easy-t...BACKGROUND D2 lymph node dissection for advanced gastric cancer is advocated,and station 8p lymph node should be considered in selected patients,which is,however,technically difficult.AIM To introduce a new and easy-to-perform procedure for dissection of the lymph nodes superior to the pancreas.METHODS A series of patients who underwent laparoscopic gastrectomy for gastric cancer were retrospectively included with utilization of a new procedure for superior pancreatic lymphadenectomy(LND)with portal vein priority via the posterior common hepatic artery approach(SPLD-PPPH)based on a newly defined portal triangle.The surgical outcome of the patients,as well as the efficacy and safety of SPLD-PPPH are reported.RESULTS A total of 51 patients were included with most of them being male(n=34,66.7%).According to the 8th edition of AJCC TNM staging,there were four(7.8%)patients in stage I,13(25.5%)in stage II,33(64.7%)in stage III and one(2.0%)in stage IV.The average duration for LND was about 1 h(67.7±6.9 min).After surgery,four patients developed morbidities,but all were treated successfully with no perioperative mortality.Among the 51 patients included,the percentage of patients who had lymph node metastasis at station 8p was 9.8%.Of note,with a total of 14 lymph nodes harvested at station 8p,the incidence of nodal metastasis was 14.3%.CONCLUSION About one in 10 patients with advanced gastric cancer had nodal metastasis at station 8p.The new approach of SPLD-PPPH is safe and effective for D2+LND during laparoscopic radical gastrectomy.展开更多
Regenerative fuel cells can operate alternately as an electrolyzer and as a fuel cell,frequently involving water as a reactant or product.Modifying the electrode surface to manipulate water can prevent electrode flood...Regenerative fuel cells can operate alternately as an electrolyzer and as a fuel cell,frequently involving water as a reactant or product.Modifying the electrode surface to manipulate water can prevent electrode flooding and enhance the electrode's mass transfer efficiency by facilitating better contact with gaseous reactants.However,conventional electrodes face difficulties in allowing water droplets to penetrate in a single direction leaving electrodes.In this work to address this issue,a wettability gradient electrode is designed and fabricated for efficient water manipulation in regenerative fuel cells.The findings demonstrate that the water removal strategy in the electrolyzer mode yields the highest ammonia yield and Faradaic efficiency of 3.39×10-10 mol s-1 cm-2 and 0.49%,respectively.Furthermore,in the fuel cell mode,the discharging process sustains for approximately 20.5 h,which is six times longer than the conventional strategy.The ability to sustain the discharging process for extended periods is particularly advantageous in regenerative fuel cells,as it enables the cells to operate for longer periods without the need for regeneration.展开更多
Lately,utilizing a novel electrically rechargeable liquid fuel(e-fuel),a fuel cell has been designed and fabricated,which is demonstrated to achieve a much better performance than alcoholic liquid fuel cells do.Howeve...Lately,utilizing a novel electrically rechargeable liquid fuel(e-fuel),a fuel cell has been designed and fabricated,which is demonstrated to achieve a much better performance than alcoholic liquid fuel cells do.However,its current performance,which thus hampers its wide application,demands further improvement to meet up with industrial requirement.Therefore,to attain a better performance for this system,an in-depth understanding of the complex physical and chemical processes within this fuel cell is essential.To this end,in this work,a two-dimensional transient model has been developed to gain an extensive knowledge of a passive e-fuel cell and analyze the major factors limiting its performance.The effects of various structural parameters and operating conditions are studied to identify the underlying performance-limiting factors,where deficient mass transport is found to be one of the major causes.The increment of anode porosity and thickness are found to be effective methods of improving the cell performance.This study therefore provides insights on achieving further per-formance advancement of the fuel cell in the future.展开更多
Li-ion batteries with solid polymer electrolytes(SPEs)are safer than conventional liquid electrolytes due to the absence of highly flammable liquid electrolytes.However,their performance is limited by the poor Li+tran...Li-ion batteries with solid polymer electrolytes(SPEs)are safer than conventional liquid electrolytes due to the absence of highly flammable liquid electrolytes.However,their performance is limited by the poor Li+transport in SPEs at room temperature.Anion-containing polymer-chains incorporated SPEs(ASPEs)are therefore developed to enhance Li^(+) diffusion kinetics.Herein,we propose a novel and feasible strategy to incorporate the anion-containing polymer-chains,such as lithiated perfluorinated sulfonic acid(PFSA),into polyvinylidene fluoride(PVDF)polymer-based SPEs.The immobile anion groups from the PFSA-chains impede the migration of mobile anion groups dissociated from the Li salt.The transference number is thus raised from∼0.3 to 0.52 with the introduction of anion-containing polymer-chains into SPEs.The electrostatic repulsion among anion-containing chains also reduces the close chain stacking and brings 159%increase in the ionic conductivity to 0.83×10^(−3) S/cm at 30℃ in contrast with the pure PVDF-based SPE.In addition,LiFeO_(4)/Li batteries with ASPEs exhibit 55%capacity boost at 0.5 C in contrast to the capacity of batteries with pure-PVDF SPEs,and also offer more than 1000 charge/discharge cycles.Our research findings potentially offer a facile strategy to design thermal stable SPEs with superior Li^(+) transport behaviors towards developing high-performance SPEs-based batteries.展开更多
All-solid-state batteries are considered as nextgeneration technology for energy storage due to their high energy density and excellent s afety.However,only a few solid electrolytes exhibit ionic conductivities compar...All-solid-state batteries are considered as nextgeneration technology for energy storage due to their high energy density and excellent s afety.However,only a few solid electrolytes exhibit ionic conductivities comparable to liquid electrolytes.Finding low-cost solid electrolytes with high Liion conductivity is in high demand.Based on the ab initio molecular dynamic simulations,the Li^(+)diffusion inβ-LiAISi_(2)O_(6),a type of cost-effective and naturally-available mineral,and its disordered systems Li_(1-x)Al_(1-x)Si_(2+x)O_(6)with-1.0≤x≤0.5 was studied.Our calculations show that the phases of Li_(1-x)Al_(1-x)Si_(2+x)O_(6)with nonzero x all possess much lower diffusion energy barriers than pristine LiAlSi_(2)O_(6).When x is positive,increased concentration of lithium vacancies accelerates the diffusion of Li-ions.When x is negative,additional Li-ions are inserted into structures and co-migration is stimulated among these Li-ions.In particular,the maximal ionic conductivity at 300 K(1.92×10^(-6)S·cm^(-1))is obtained in Li_(2)Al_(2)SiO_(6)(x=-1.0),which is five orders of magnitude larger than that of pristineβ-LiAlSi_(2)O_(6).In addition,the diffusion barrier can be further reduced to 0.38 eV by replacing Si with Ge,and the ionic conductivity for Li_(2)Al_(2)GeO_(6)can reach 3.08×10~(-5)S·cm^(-1)at 300 K.Our work facilitates the understanding of Li+conduction mechanisms in silicatebased electrolytes and the development of cost-effective and high-performance solid-s ate electrolytes.展开更多
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3...Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.展开更多
In this study, a membraneless, monolithic micro photocatalytic fuel cell with an air-breathing cathode was developed for simultaneous wastewater treatment and electricity generation. In this newly-developed micro phot...In this study, a membraneless, monolithic micro photocatalytic fuel cell with an air-breathing cathode was developed for simultaneous wastewater treatment and electricity generation. In this newly-developed micro photocatalytic fuel cell, the photoanode and cathode were arranged with a shoulder-to-shoulder design, forming two planar electrodes. Such design offers several advantages of enhanced mass transfer, uniform light distribution, short light transfer path, membrane elimination and easy fabrication, integration, and compatibility with other microdevices. The performance of this type fuel cell was evaluated by using methanol as a model pollutant under the alkaline condition. Experimental results indicated the developed micro photocatalytic fuel cell was able to show good photo-response to the illumination and satisfactory performance as well as durability. Parametric study on the cell performance was also performed. It was found that increasing the light intensity, methanol concentration andKOH concentration could improve the cell performance. But for the effect of the liquid flow rate, it was shown that the cell performance firstly increased with increasing the liquid flow rate and then decreased with further increasing the liquid flow rate. This study not only opens a new avenue for the design of the micro photocatalytic fuel cell but also is helpful for the optimization of the operating conditions.展开更多
The screening of advanced materials coupled with the modeling of their quantitative structural-activity relation-ships has recently become one of the hot and trending topics in energy materials due to the diverse chal...The screening of advanced materials coupled with the modeling of their quantitative structural-activity relation-ships has recently become one of the hot and trending topics in energy materials due to the diverse challenges,including low success probabilities,high time consumption,and high computational cost associated with the traditional methods of developing energy materials.Following this,new research concepts and technologies to promote the research and development of energy materials become necessary.The latest advancements in ar-tificial intelligence and machine learning have therefore increased the expectation that data-driven materials science would revolutionize scientific discoveries towards providing new paradigms for the development of en-ergy materials.Furthermore,the current advances in data-driven materials engineering also demonstrate that the application of machine learning technology would not only significantly facilitate the design and development of advanced energy materials but also enhance their discovery and deployment.In this article,the importance and necessity of developing new energy materials towards contributing to the global carbon neutrality are presented.A comprehensive introduction to the fundamentals of machine learning is also provided,including open-source databases,feature engineering,machine learning algorithms,and analysis of machine learning model.Afterwards,the latest progress in data-driven materials science and engineering,including alkaline ion battery materials,pho-tovoltaic materials,catalytic materials,and carbon dioxide capture materials,is discussed.Finally,relevant clues to the successful applications of machine learning and the remaining challenges towards the development of advanced energy materials are highlighted.展开更多
Efficient removal of formaldehyde from indoor environments is of significance for human health.In this work,a typical binary transition metal oxide that could provide various oxidation states,β-NiMoO4,was employed as...Efficient removal of formaldehyde from indoor environments is of significance for human health.In this work,a typical binary transition metal oxide that could provide various oxidation states,β-NiMoO4,was employed as a support to immobilize the active Pt component(Pt/NiMoO4)for catalytic formaldehyde elimination at low ambient temperature(15℃).The results showed that the hydrothermal preparation temperature and time had a noticeable impact on the morphology and catalytic activity of the samples.The catalyst prepared with hydrothermal temperature of 150℃for 4 hr(Pt-150-4)exhibited superior catalytic activity and stability mainly due to its distinctly porous structure,relative abundance of adsorbed surface hydroxyls/water,and high oxidation ability,which resulted from the interaction of Pt with Ni and Mo of the bimetallic NiMoO4 support.Our results might shed light on the rational design of multifunctional catalysts for removal of indoor air pollutants at low ambient temperature.展开更多
文摘臭氧是一种环境友好型氧化剂,可直接用于消毒、杀菌和废水处理,对于维护和促进公共卫生安全至关重要.由于臭氧容易分解,不利于储存,因此需要现制即用.目前臭氧生成技术主要包括:电晕放电法和电催化臭氧生产(EOP)技术.相较于电晕放电法,EOP是一种本质安全的臭氧生产技术.然而,该工艺相较于电晕放电技术电能消耗量大,为了使其更具商业可行性,有必要开发高活性且低成本的电催化剂.此外,合理的电解槽设计对于实现高效EOP过程也至关重要.然而,目前研究主要集中在提高EOP催化剂活性方面,对电解槽的结构设计优化的关注较少.本文通过开发高效电催化剂进而将其应用于结构优化后的电解槽中,实现了更加高效的EOP过程.本文采用水热方法成功制备了一种具有较高EOP活性的方形氧化铅(PbO_(x)-CTAB-120)电催化剂.在标准三电极测试系统中,电流密度为50 mA cm^(-2)的测试条件下,法拉第效率(FE)可达20.7%,与商用β-PbO_(2)(17.1%)相比提高了21.1%.此外,设计了具有平行流场的可视化EOP电解槽,该可视化电解槽在传质和传热方面具有明显优势,有利于实现更加高效的EOP过程.将催化剂PbO_(x)-CTAB-120组装至可视化电解槽中,在1.0 A cm^(-2)的测试电流密度下,电解液为超纯水,该体系气态臭氧产量可以达到588 mg h^(-1)g^(-1)catalyst,比能量消耗(PEOP)为56 Wh g^(-1)gaseous ozone.体系臭氧产量约为商用β-PbO_(2)在传统电解槽中产量的2倍,并且PEOP降低率超过62%.原位18O同位素标记差分电化学质谱和密度泛函理论计算结果表明,PbO_(x)-CTAB-120电催化剂在EOP过程中遵循晶格氧机理路径,晶格氧迁移产生的氧空位能有效稳定OOH^(*)和O_(2)^(*)反应中间体,因此有利于催化剂在EOP过程中保持较好的反应活性和稳定性.同时,还利用先进的高速摄像可视化工具和计算流体力学(CFD)仿真模拟研究了平行流场EOP电解槽的运行过程和高效传质传热的原理.CFD模拟结果表明,与传统流场模型相比,平行流场对应的出口气泡停留时间更长,说明平行流场更有利于产物气泡从出口逸出,即气泡容易快速扩散,与实验结果一致.因此,PbO_(x)-CTAB-120电催化剂与新型可视化电解槽相结合,有助于在超纯水中实现较好的气态臭氧产率和较低比能耗.此外,二者的结合充分发挥了电催化剂的EOP活性和电解槽的传质特性所带来的优势,实现了反应性和传输性的协同增强,从而极大促进了原位有机污染物降解效率.综上所述,本文在制备高效阳极催化剂的基础上,同时利用优化电解槽结构实现了提升臭氧产率和降低过程能耗,为高活性电催化剂与优化的电解槽耦合以实现高效EOP过程及其有效应用提供参考.
文摘Background This study presents a neural hand reconstruction method for monocular 3D hand pose and shape estimation.Methods Alternate to directly representing hand with 3D data,a novel UV position map is used to represent a hand pose and shape with 2D data that maps 3D hand surface points to 2D image space.Furthermore,an encoder-decoder neural network is proposed to infer such UV position map from a single image.To train this network with inadequate ground truth training pairs,we propose a novel MANOReg module that employs MANO model as a prior shape to constrain high dimensional space of the UV position map.Results The quantitative and qualitative experiments demonstrate the effectiveness of our UV position map representation and MANOReg module.
文摘BACKGROUND D2 lymph node dissection for advanced gastric cancer is advocated,and station 8p lymph node should be considered in selected patients,which is,however,technically difficult.AIM To introduce a new and easy-to-perform procedure for dissection of the lymph nodes superior to the pancreas.METHODS A series of patients who underwent laparoscopic gastrectomy for gastric cancer were retrospectively included with utilization of a new procedure for superior pancreatic lymphadenectomy(LND)with portal vein priority via the posterior common hepatic artery approach(SPLD-PPPH)based on a newly defined portal triangle.The surgical outcome of the patients,as well as the efficacy and safety of SPLD-PPPH are reported.RESULTS A total of 51 patients were included with most of them being male(n=34,66.7%).According to the 8th edition of AJCC TNM staging,there were four(7.8%)patients in stage I,13(25.5%)in stage II,33(64.7%)in stage III and one(2.0%)in stage IV.The average duration for LND was about 1 h(67.7±6.9 min).After surgery,four patients developed morbidities,but all were treated successfully with no perioperative mortality.Among the 51 patients included,the percentage of patients who had lymph node metastasis at station 8p was 9.8%.Of note,with a total of 14 lymph nodes harvested at station 8p,the incidence of nodal metastasis was 14.3%.CONCLUSION About one in 10 patients with advanced gastric cancer had nodal metastasis at station 8p.The new approach of SPLD-PPPH is safe and effective for D2+LND during laparoscopic radical gastrectomy.
基金supported by a grant from the National Natural Science Foundation of China(52161160333)a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(N_PolyU559/21)a grant from the Research Institute for Sports Science and Technology at The Hong Kong Polytechnic University(CD5L).
文摘Regenerative fuel cells can operate alternately as an electrolyzer and as a fuel cell,frequently involving water as a reactant or product.Modifying the electrode surface to manipulate water can prevent electrode flooding and enhance the electrode's mass transfer efficiency by facilitating better contact with gaseous reactants.However,conventional electrodes face difficulties in allowing water droplets to penetrate in a single direction leaving electrodes.In this work to address this issue,a wettability gradient electrode is designed and fabricated for efficient water manipulation in regenerative fuel cells.The findings demonstrate that the water removal strategy in the electrolyzer mode yields the highest ammonia yield and Faradaic efficiency of 3.39×10-10 mol s-1 cm-2 and 0.49%,respectively.Furthermore,in the fuel cell mode,the discharging process sustains for approximately 20.5 h,which is six times longer than the conventional strategy.The ability to sustain the discharging process for extended periods is particularly advantageous in regenerative fuel cells,as it enables the cells to operate for longer periods without the need for regeneration.
基金The work described in this paper was supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Re-gion,China(Project No.T23–601/17-R)a grant from the Research Institute for Smart Energy(RISE)at The Hong Kong Polytechnic Uni-versity(Q-CDA4).
文摘Lately,utilizing a novel electrically rechargeable liquid fuel(e-fuel),a fuel cell has been designed and fabricated,which is demonstrated to achieve a much better performance than alcoholic liquid fuel cells do.However,its current performance,which thus hampers its wide application,demands further improvement to meet up with industrial requirement.Therefore,to attain a better performance for this system,an in-depth understanding of the complex physical and chemical processes within this fuel cell is essential.To this end,in this work,a two-dimensional transient model has been developed to gain an extensive knowledge of a passive e-fuel cell and analyze the major factors limiting its performance.The effects of various structural parameters and operating conditions are studied to identify the underlying performance-limiting factors,where deficient mass transport is found to be one of the major causes.The increment of anode porosity and thickness are found to be effective methods of improving the cell performance.This study therefore provides insights on achieving further per-formance advancement of the fuel cell in the future.
基金supported by the National Natural Science Foundation of China(Nos.51972043 and 52102212)the Sichuan-Hong Kong Collaborative Research Fund(No.2021YFH0184)+1 种基金the Foundation of Yangtze Delta Region Institute(Huzhou)of UESTC,China(Nos.U03210010 and U03210028)Huzhou Science and Technology Special Representative Project(No.2021KT54).
文摘Li-ion batteries with solid polymer electrolytes(SPEs)are safer than conventional liquid electrolytes due to the absence of highly flammable liquid electrolytes.However,their performance is limited by the poor Li+transport in SPEs at room temperature.Anion-containing polymer-chains incorporated SPEs(ASPEs)are therefore developed to enhance Li^(+) diffusion kinetics.Herein,we propose a novel and feasible strategy to incorporate the anion-containing polymer-chains,such as lithiated perfluorinated sulfonic acid(PFSA),into polyvinylidene fluoride(PVDF)polymer-based SPEs.The immobile anion groups from the PFSA-chains impede the migration of mobile anion groups dissociated from the Li salt.The transference number is thus raised from∼0.3 to 0.52 with the introduction of anion-containing polymer-chains into SPEs.The electrostatic repulsion among anion-containing chains also reduces the close chain stacking and brings 159%increase in the ionic conductivity to 0.83×10^(−3) S/cm at 30℃ in contrast with the pure PVDF-based SPE.In addition,LiFeO_(4)/Li batteries with ASPEs exhibit 55%capacity boost at 0.5 C in contrast to the capacity of batteries with pure-PVDF SPEs,and also offer more than 1000 charge/discharge cycles.Our research findings potentially offer a facile strategy to design thermal stable SPEs with superior Li^(+) transport behaviors towards developing high-performance SPEs-based batteries.
基金financially supported by the National Natural Science foundation of China(Nos.51972043 and 52102212)Sichuan-Hong Kong Collaborative Research Fund(No.2021YFH0184)+1 种基金Sichuan Natural Science Fund(Nos.23NSFSC0411 and 23NSFSC3618)the Foundation of Yangtze Delta Region Institute(Huzhou)of UESTC,China(Nos.U03210010 and U03210028)。
文摘All-solid-state batteries are considered as nextgeneration technology for energy storage due to their high energy density and excellent s afety.However,only a few solid electrolytes exhibit ionic conductivities comparable to liquid electrolytes.Finding low-cost solid electrolytes with high Liion conductivity is in high demand.Based on the ab initio molecular dynamic simulations,the Li^(+)diffusion inβ-LiAISi_(2)O_(6),a type of cost-effective and naturally-available mineral,and its disordered systems Li_(1-x)Al_(1-x)Si_(2+x)O_(6)with-1.0≤x≤0.5 was studied.Our calculations show that the phases of Li_(1-x)Al_(1-x)Si_(2+x)O_(6)with nonzero x all possess much lower diffusion energy barriers than pristine LiAlSi_(2)O_(6).When x is positive,increased concentration of lithium vacancies accelerates the diffusion of Li-ions.When x is negative,additional Li-ions are inserted into structures and co-migration is stimulated among these Li-ions.In particular,the maximal ionic conductivity at 300 K(1.92×10^(-6)S·cm^(-1))is obtained in Li_(2)Al_(2)SiO_(6)(x=-1.0),which is five orders of magnitude larger than that of pristineβ-LiAlSi_(2)O_(6).In addition,the diffusion barrier can be further reduced to 0.38 eV by replacing Si with Ge,and the ionic conductivity for Li_(2)Al_(2)GeO_(6)can reach 3.08×10~(-5)S·cm^(-1)at 300 K.Our work facilitates the understanding of Li+conduction mechanisms in silicatebased electrolytes and the development of cost-effective and high-performance solid-s ate electrolytes.
基金Research Institute for Smart Energy(CDB2)the grant from the Research Institute for Advanced Manufacturing(CD8Z)+4 种基金the grant from the Carbon Neutrality Funding Scheme(WZ2R)at The Hong Kong Polytechnic Universitysupport from the Hong Kong Polytechnic University(CD9B,CDBZ and WZ4Q)the National Natural Science Foundation of China(22205187)Shenzhen Municipal Science and Technology Innovation Commission(JCYJ20230807140402006)Start-up Foundation for Introducing Talent of NUIST and Natural Science Foundation of Jiangsu Province of China(BK20230426).
文摘Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.
基金Acknowledgments The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (51576021, 51222603, 51276208 and 51325602) and the National High-Tech R&D Program of China (2015AA043503).
文摘In this study, a membraneless, monolithic micro photocatalytic fuel cell with an air-breathing cathode was developed for simultaneous wastewater treatment and electricity generation. In this newly-developed micro photocatalytic fuel cell, the photoanode and cathode were arranged with a shoulder-to-shoulder design, forming two planar electrodes. Such design offers several advantages of enhanced mass transfer, uniform light distribution, short light transfer path, membrane elimination and easy fabrication, integration, and compatibility with other microdevices. The performance of this type fuel cell was evaluated by using methanol as a model pollutant under the alkaline condition. Experimental results indicated the developed micro photocatalytic fuel cell was able to show good photo-response to the illumination and satisfactory performance as well as durability. Parametric study on the cell performance was also performed. It was found that increasing the light intensity, methanol concentration andKOH concentration could improve the cell performance. But for the effect of the liquid flow rate, it was shown that the cell performance firstly increased with increasing the liquid flow rate and then decreased with further increasing the liquid flow rate. This study not only opens a new avenue for the design of the micro photocatalytic fuel cell but also is helpful for the optimization of the operating conditions.
基金This work was fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project no.15222018).
文摘The screening of advanced materials coupled with the modeling of their quantitative structural-activity relation-ships has recently become one of the hot and trending topics in energy materials due to the diverse challenges,including low success probabilities,high time consumption,and high computational cost associated with the traditional methods of developing energy materials.Following this,new research concepts and technologies to promote the research and development of energy materials become necessary.The latest advancements in ar-tificial intelligence and machine learning have therefore increased the expectation that data-driven materials science would revolutionize scientific discoveries towards providing new paradigms for the development of en-ergy materials.Furthermore,the current advances in data-driven materials engineering also demonstrate that the application of machine learning technology would not only significantly facilitate the design and development of advanced energy materials but also enhance their discovery and deployment.In this article,the importance and necessity of developing new energy materials towards contributing to the global carbon neutrality are presented.A comprehensive introduction to the fundamentals of machine learning is also provided,including open-source databases,feature engineering,machine learning algorithms,and analysis of machine learning model.Afterwards,the latest progress in data-driven materials science and engineering,including alkaline ion battery materials,pho-tovoltaic materials,catalytic materials,and carbon dioxide capture materials,is discussed.Finally,relevant clues to the successful applications of machine learning and the remaining challenges towards the development of advanced energy materials are highlighted.
基金supported by the National Natural Science Foundation of China(Nos.21577046 and 21871111)Wuhan Morning Light plan of Youth Science and Technology(No.2017050304010327)
文摘Efficient removal of formaldehyde from indoor environments is of significance for human health.In this work,a typical binary transition metal oxide that could provide various oxidation states,β-NiMoO4,was employed as a support to immobilize the active Pt component(Pt/NiMoO4)for catalytic formaldehyde elimination at low ambient temperature(15℃).The results showed that the hydrothermal preparation temperature and time had a noticeable impact on the morphology and catalytic activity of the samples.The catalyst prepared with hydrothermal temperature of 150℃for 4 hr(Pt-150-4)exhibited superior catalytic activity and stability mainly due to its distinctly porous structure,relative abundance of adsorbed surface hydroxyls/water,and high oxidation ability,which resulted from the interaction of Pt with Ni and Mo of the bimetallic NiMoO4 support.Our results might shed light on the rational design of multifunctional catalysts for removal of indoor air pollutants at low ambient temperature.