Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s...Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.展开更多
Objectives:Thyroid cancer(THCA)is the most common malignant tumor in endocrine system and the incidence has been increasing worldwide.And the number of patients dying from THCA has also gradually risen because the inc...Objectives:Thyroid cancer(THCA)is the most common malignant tumor in endocrine system and the incidence has been increasing worldwide.And the number of patients dying from THCA has also gradually risen because the incidence continues to increase,so the mechanisms related to effective targets is necessary to improve the survival.This study was to preliminarily investigate the effects of the COL4A2 gene on the regulation of thyroid cancer(THCA)cell proliferation and the associated pathways.Methods:Bioinformatics analysis revealed that COL4A2 was closely associated with cancer development.COL4A2 expression in THCA tissues was analyzed using immunohistochemistry,and survival information was determined via Kaplan-Meier curves.The expression of COL4A2 and AKT pathway-related genes were analyzed using qPCR and western blot analyses.Colony formation as well as CCK-8 assays exhibited the cell proliferation level and cell activity,respectively.Downstream of COL4A2 was identified by Gene set enrichment analysis(GSEA).The effects of the COL4A2 and AKT pathways on THCA tumor growth in vivo were determined using a mouse model.Results:Bioinformatics analysis exhibited that COL4A2 plays a significant role in cancer and that the AKT pathway is downstream of COL4A2.THCA patients with high COL4A2 expression had shorter recurrence-free survival.Upregulation of COL4A2 gene expression in 2 THCA cell lines promoted tumor cell growth and activity.The use of AKT pathway blockers also restrained the growth and activity of the 2 THCA cell lines.The use of AKT pathway blockers reduced tumor volume and mass and prolonged mouse survival.Conclusions:COL4A2 can promote the growth as well as development of THCA through the AKT pathway and COL4A2 could be used as a target for THCA.展开更多
The practical application of lithium-sulfur(Li-S)batteries,as promising next-generation batteries,is hindered by their shuttle effect and the slow redox kinetics.Herein,a tungsten and molybdenum nitride heterostructur...The practical application of lithium-sulfur(Li-S)batteries,as promising next-generation batteries,is hindered by their shuttle effect and the slow redox kinetics.Herein,a tungsten and molybdenum nitride heterostructure functionalized with hollow metal-organic framework-derived carbon(W_(2)N/Mo_(2)N)was proposed as the sulfur host.The hollow spherical structure provides storage space for sulfur,enhances electrical conductivity,and inhibits volume expansion.The metal atoms in the nitrides bonded with lithium polysulfides(Li PSs)through Lewis covalent bonds,enhancing the high catalytic activity of the nitrides and effectively reducing the energy barrier of Li PSs redox conversion.Moreover,the high intrinsic conductivity of nitrides and the ability of the heterostructure interface to accelerate electron/ion transport improved the Li+transmission.By leveraging the combined properties of strong adsorption and high catalytic activity,the sulfur host effectively inhibited the shuttle effect and accelerated the redox kinetics of Li PSs.High-efficiency Li+transmission,strong adsorption,and the efficient catalytic conversion activities of Li PSs in the heterostructure were experimentally and theoretically verified.The results indicate that the W_(2)N/Mo_(2)N cathode provides stable,and long-term cycling(over 2000 cycles)at 3 C with a low attenuation rate of 0.0196%per cycle.The design strategy of a twinborn nitride heterostructure thus provides a functionalized solution for advanced Li-S batteries.展开更多
Nighttime sap flow(Q_(n))is an important physiological activity under which trees manage drought stress.An in-depth understanding of the characteristics of Q_(n)and its response to environmental and canopy conditions ...Nighttime sap flow(Q_(n))is an important physiological activity under which trees manage drought stress.An in-depth understanding of the characteristics of Q_(n)and its response to environmental and canopy conditions are of significance for arid area forest and water management.This study measured daily sap flow(Q_(s))of a Larix principis-rupprechtii plantation in the Liupan Mountains,northwest China during the 2017-2019 growing seasons,and separated Q_(s)into daytime sap flow(Qd)and Q_(n).Meteorological conditions(reference evapotranspiration,ETref),canopy structure(leaf area index,LAI),and soil moisture(relative soil water content,RSWC)were considered as the main biophysical factors affecting Q_(n).The structural equation model and upper boundary line method determined the effects of compound and single factors on Q_(n)The daily mean Q_(n)values during the growing seasons in 2017,2018,and 2019 were 0.024,0.026,and 0.030 mm d-1,accounting for 6.2,11.2,and 10.1%of Q_(s),respectively.Q_(n)at different canopy development phases(leaf expanding,LG;leaf expanded,LD;and defoliation,DF)over three years was LD>LG>DF.Q_(n)increased with increasing ETref,whereas the ratio of Q_(n)to Q_(s)decreased.Q_(n)did not show regular variation in the three-year growing seasons under different soil moisture conditions.ETrefand LAI mainly controlled Q_(n)by affecting Qd,whereas RSWC had no significant effect on Q_(n).Q_(n)had a positive and linear relationship with LAI and a quadratic relationship with ETref.Both explained 40%of variation in Q_(n)Meteorological and canopy conditions are important factors affecting Q_(n)on the semi-humid study site.The application of the Q_(n)model coupled with the impact of ETrefand LAI furthers understanding of the impacts of climate and forest structure change on Q_(n).展开更多
Conducting polymers have achieved remarkable attentions owing to their exclusive characteristics,for instance,electrical conductivity,high ionic conductivity,visual transparency,and mechanical tractability.Surface and...Conducting polymers have achieved remarkable attentions owing to their exclusive characteristics,for instance,electrical conductivity,high ionic conductivity,visual transparency,and mechanical tractability.Surface and nanostructure engineering of conjugated conducting polymers offers an exceptional pathway to facilitate their implementation in a variety of scientific claims,comprising energy storage and production devices,flexible and wearable optoelectronic devices.A two-step tactic to assemble high-performance polypyrrole(PPy)-based microsupercapacitor(MSC)is utilized by transforming the current collectors to suppress structural pulverization and increase the adhesion of PPy,and then electrochemical co-deposition of PPy-CNT nanostructures on rGO@Au current collectors is performed.The resulting fine patterned MSC conveyed a high areal capacitance of 65.9 mF cm^(−2)(at a current density of 0.1 mA cm^(−2)),an exceptional cycling performance of retaining 79%capacitance after 10,000 charge/discharge cycles at 5 mA cm^(−2).Benefiting from the intermediate graphene,current collector free PPy-CNT@rGO flexible MSC is produced by a facile transfer method on a flexible substrate,which delivered an areal capacitance of 70.25 mF cm^(−2) at 0.1 mA cm^(−2) and retained 46%of the initial capacitance at a current density of 1.0 mA cm^(−2).The flexible MSC is utilized as a skin compatible capacitive micro-strain sensor with excellent electromechanochemical characteristics.展开更多
BACKGROUND In patients with schizophrenia,the brain structure and neurotransmitter levels change,which may be related to the occurrence and progression of this disease.AIM To explore the relationships between changes ...BACKGROUND In patients with schizophrenia,the brain structure and neurotransmitter levels change,which may be related to the occurrence and progression of this disease.AIM To explore the relationships between changes in neurotransmitters,brain structural characteristics,and the scores of the Positive and Negative Symptom Scale(PANSS)in patients with first-episode schizophrenia.METHODS The case group comprised 97 patients with schizophrenia,who were evaluated using the Canadian Neurological Scale and confirmed by laboratory tests at Ningbo Mental Hospital from January 2020 to July 2022.The control group comprised 100 healthy participants.For all participants,brain structural characteristics were explored by measuring brain dopamine(DA),glutamic acid(Glu),and gamma-aminobutyric acid(GABA)levels,with magnetic resonance imaging.The case group was divided into negative and positive symptom subgroups using PANSS scores for hierarchical analysis.Linear correlation analysis was used to analyze the correlations between neurotransmitters,brain structural character istics,and PANSS scores.RESULTS Patients in the case group had higher levels of DA and lower levels of Glu and GABA,greater vertical and horizontal distances between the corpus callosum and the inferior part of the fornix and larger ventricle area than patients in the control group(P<0.05).Patients with positive schizophrenia symptoms had significantly higher levels of DA,Glu,and GABA than those with negative symptoms(P<0.05).In patients with positive schizophrenia symptoms,PANSS score was significantly positively correlated with DA,vertical and horizontal distances between the corpus callosum and the infrafornix,and ventricular area,and was significantly negatively correlated with Glu and GABA(P<0.05).In patients with negative schizophrenia symptoms,PANSS score was significantly positively correlated with DA,vertical distance between the corpus callosum and the infrafornix,horizontal distance between the corpus callosum and the infrafornix,and ventricular area,and was significantly negatively correlated with Glu and GABA(P<0.05).CONCLUSION In patients with first-episode schizophrenia,DA levels increased,Glu and GABA levels decreased,the thickness of the corpus callosum increased,and these variables were correlated with PANSS scores.展开更多
For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.He...For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.Herein,we proposed interchanging interdigital Au-/MnO_(2)/polyethylene dioxythiophene stacked microsupercapacitor based on a microfabrication process followed by successive electrochemical deposition.The stacked configuration of two pseudocapacitive active microelectrodes meritoriously leads to an enhanced contact area between MnO_(2)and the conductive and electroactive layer of polyethylene dioxythiophene,hence providing excellent electron transport and diffusion pathways of electrolyte ions,resulting in increased pseudocapacitance of MnO_(2)and polyethylene dioxythiophene.The stacked quasi-solid-state microsupercapacitors delivered the maximum specific capacitance of 43 mF cm^(-2)(211.9 F cm^(-3)),an energy density of 3.8μWh cm^(-2)(at a voltage window of 0.8 V)and 5.1μWh cm^(-2)(at a voltage window of 1.0 V)with excellent rate capability(96.6%at 2 mA cm^(-2))and cycling performance of 85.3%retention of initial capacitance after 10000 consecutive cycles at a current density of 5 mA cm^(-2),higher than those of ever reported polyethylene dioxythiophene and MnO_(2)-based planar microsupercapacitors.Benefiting from the favorable morphology,bilayer microsupercapacitor is utilized as a flexible humidity sensor with a response/relaxation time superior to those of some commercially available integrated microsensors.This strategy will be of significance in developing high-performance on-chip integrated microsupercapacitors/microsensors at low cost and environment-friendly routes.展开更多
Heterostructures of van der Waals(vdW)ferromagnetic materials have become a focal point in research of lowdimensional spintronic devices.The current direction in spin valves is commonly perpendicular to the plane(CPP)...Heterostructures of van der Waals(vdW)ferromagnetic materials have become a focal point in research of lowdimensional spintronic devices.The current direction in spin valves is commonly perpendicular to the plane(CPP).However,the transport properties of the CPP mode remain largely unexplored.In this work,current-in-plane(CIP)mode and CPP mode for CrTe_(2) thin films are carefully studied.The temperature-dependent longitudinal resistance transitions from metallic(CIP)to semiconductor behavior(CPP),with the electrical resistivity of CPP increased by five orders of magnitude.More importantly,the transport properties of the CPP can be categorized into a single-gap tunneling-through model with the activation energy(Ea)of1.34 meV/gap at 300–150 K,the variable range hopping model with a linear negative magnetoresistance at 150–20 K,and weak localization region with a nonlinear magnetic resistance below 20 K.This study explores the vertical transport in CrTe_(2) materials for the first time,contributing to understand its unique properties and to pave the way for its potential in spin valve devices.展开更多
Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)co...Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries.展开更多
Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vu...Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vulnerabilities of industrial robots were analyzed empirically,using more than three million communication packets collected with testbeds of two ABB IRB120 robots and five other robots from various original equipment manufacturers(OEMs).This analysis,guided by the confidentiality-integrity-availability(CIA)triad,uncovers robot vulnerabilities in three dimensions:confidentiality,integrity,and availability.These vulnerabilities were used to design Covering Robot Manipulation via Data Deception(CORMAND2),an automated cyber-physical attack against industrial robots.CORMAND2 manipulates robot operation while deceiving the Supervisory Control and Data Acquisition(SCADA)system that the robot is operating normally by modifying the robot’s movement data and data deception.CORMAND2 and its capability of degrading the manufacturing was validated experimentally using the aforementioned seven robots from six different OEMs.CORMAND2 unveils the limitations of existing anomaly detection systems,more specifically the assumption of the authenticity of SCADA-received movement data,to which we propose mitigations for.展开更多
Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid d...Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets.This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices,thereby inducing a magnetic nonreciprocal effect,in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes.Furthermore,the polarity of the magnetic nonreciprocity is in situ reversible through the tunable magnetic patterns of artificial spin ice.Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities,offering a groundbreaking paradigm for superconducting electronics.展开更多
Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-size...Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-sized high-quality Fe_(3)GaTe_(2)thin films need to be prepared.Here,the centimeter-scale thin film samples with high crystal quality and above-room-temperature ferromagnetism with strong perpendicular magnetic anisotropy were prepared by molecular beam epitaxy technology.Furthermore,the Tc of the samples raises as the film thickness increases,and reaches 367K when the film thickness is 60 nm.This study provides material foundations for the new generation of van der Waals spintronic devices and paves the way for the commercial application of Fe_(3)GaTe_(2).展开更多
A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength c...A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength calibration for the VUV spectroscopy is achieved utilizing a zinc lamp.The grating angle and charge-coupled device(CCD)position are carefully calibrated for different wavelength positions.The wavelength calibration of the VUV spectroscopy is crucial for improving the accuracy of impurity spectral data,and is required to identify more impurity spectral lines for impurity transport research.Impurity spectra of EAST plasmas have also been obtained in the wavelength range of 50–300 nm with relatively high spectral resolution.It is found that the impurity emissions in the edge region are still dominated by low-Z impurities,such as carbon,oxygen,and nitrogen,albeit with the application of fulltungsten divertors on the EAST tokamak.展开更多
The electrode Pt-loading has an effect on the number of active sites and the thickness of catalyst layer,which has huge influence on the mass transfer and water management during dynamic process in PEMFCs. In this stu...The electrode Pt-loading has an effect on the number of active sites and the thickness of catalyst layer,which has huge influence on the mass transfer and water management during dynamic process in PEMFCs. In this study, membrane electrode assemblies with different Pt-loadings were prepared, and PEMFCs were assembled using those membrane electrode assemblies with traditional solid plate and water transport plate as cathode flow-field plates, respectively. The performance and electrochemical surface area of cells were characterized to evaluate the membrane electrode assemblies degradation after rapid currentvariation cycles. Scanning electron microscope and transmission electron microscope were used to investigate the decay of catalyst layers and Pt/C catalyst. With the increase of Pt-loading, the performance degradation of membrane electrode assemblies will be mitigated. But higher Pt-loading means thicker catalyst layer, which leads to a longer pathway of mass transfer, and it may result in carbon material corrosion in membrane electrode assemblies. The decay of Pt/C catalyst in cathode is mainly caused by the corrosion of carbon support, and the degradation of anode Pt/C catalyst is a consequence of migration and aggregation of Pt particles. And using water transport plate is beneficial to alleviating the age of cathode Pt/C catalyst.展开更多
The dominant wavelength range of edge impurity emissions moves from the visible range to the vacuum ultraviolet(VUV)range,as heating power increasing in the Experimental Advanced Superconducting Tokamak(EAST).The meas...The dominant wavelength range of edge impurity emissions moves from the visible range to the vacuum ultraviolet(VUV)range,as heating power increasing in the Experimental Advanced Superconducting Tokamak(EAST).The measurement provided by the existing visible spectroscopies in EAST is not sufficient for impurity transport studies for high-parameters plasmas.Therefore,in this study,a VUV spectroscopy is newly developed to measure edge impurity emissions in EAST.One Seya-Namioka VUV spectrometer(McPherson 234/302)is used in the system,equipped with a concave-corrected holographic grating with groove density of 600 grooves mm-1.Impurity line emissions can be observed in the wavelength range ofλ=50-700 nm,covering VUV,near ultraviolet and visible ranges.The observed vertical range is Z=-350-350 mm.The minimum sampling time can be set to 5 ms under full vertical binning(FVB)mode.VUV spectroscopy has been used to measure the edge impurity emission for the 2019 EAST experimental campaign.Impurity spectra are identified for several impurity species,i.e.,lithium(Li),carbon(C),oxygen(O),and iron(Fe).Several candidates for tungsten(W)lines are also measured but their clear identification is very difficult due to a strong overlap with Fe lines.Time evolutions of impurity carbon emissions of CⅡat 134.5 nm and CⅢat 97.7 nm are analyzed to prove the system capability of time-resolved measurement.The measurements of the VUV spectroscopy are very helpful for edge impurity transport study in the high-parameters plasma in EAST.展开更多
The nanofiber electrodes have been considered as promising candidates for commercial proton exchange membrane fuel cells due to their high catalyst utilization and enhanced mass transport efficiency.However,for the fi...The nanofiber electrodes have been considered as promising candidates for commercial proton exchange membrane fuel cells due to their high catalyst utilization and enhanced mass transport efficiency.However,for the first time our research determined that the nanofiber electrodes were restricted by the poor chemical stability of the polymer carriers.To gain further insight into the durability of nanofiber electrodes,both cyclic voltammetry aging tests and Fenton’s tests were conducted.Similar to previous reports,our research demonstrated that nanofiber electrodes showed remarkable stability in the cyclic voltammetry aging process.However,Fenton’s tests indicated that nanofibers in the electrodes would decompose easily while being attacked by reactive oxygen species such as HO·or HOO·,which greatly limits their practicability and reliability.The different performances under the two tests also demonstrated that the cyclic voltammetry aging protocols,which have been applied extensively,cannot well mirror the real operating conditions of fuel cells.展开更多
Stress voltages on time-dependent breakdown characteristics of GaN MIS-HEMTs during negative gate bias stress (with VGS < 0, VD = VS = 0) and off-state stress (VG < VTh, VDS > 0, VS = 0) are investigated. For...Stress voltages on time-dependent breakdown characteristics of GaN MIS-HEMTs during negative gate bias stress (with VGS < 0, VD = VS = 0) and off-state stress (VG < VTh, VDS > 0, VS = 0) are investigated. For negative bias stress, the breakdown time distribution (β) decreases with the increasing negative gate voltage, while β is larger for higher drain voltage at off-state stress. Two humps in the time-dependent gate leakage occurred under both breakdown conditions, which can be ascribed to the dielectric breakdown triggered earlier and followed by the GaN layer breakdown. Combining the electric distribution from simulation and long-term monitoring of electric parameter, the peak electric fields under the gate edges at source and drain sides are confirmed as the main formation locations for per-location paths during negative gate voltage stress and off-state stress, respectively.展开更多
基金supported by the National Natural Science Foundation of China (Nos.21701083 and 22179054).
文摘Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.
文摘Objectives:Thyroid cancer(THCA)is the most common malignant tumor in endocrine system and the incidence has been increasing worldwide.And the number of patients dying from THCA has also gradually risen because the incidence continues to increase,so the mechanisms related to effective targets is necessary to improve the survival.This study was to preliminarily investigate the effects of the COL4A2 gene on the regulation of thyroid cancer(THCA)cell proliferation and the associated pathways.Methods:Bioinformatics analysis revealed that COL4A2 was closely associated with cancer development.COL4A2 expression in THCA tissues was analyzed using immunohistochemistry,and survival information was determined via Kaplan-Meier curves.The expression of COL4A2 and AKT pathway-related genes were analyzed using qPCR and western blot analyses.Colony formation as well as CCK-8 assays exhibited the cell proliferation level and cell activity,respectively.Downstream of COL4A2 was identified by Gene set enrichment analysis(GSEA).The effects of the COL4A2 and AKT pathways on THCA tumor growth in vivo were determined using a mouse model.Results:Bioinformatics analysis exhibited that COL4A2 plays a significant role in cancer and that the AKT pathway is downstream of COL4A2.THCA patients with high COL4A2 expression had shorter recurrence-free survival.Upregulation of COL4A2 gene expression in 2 THCA cell lines promoted tumor cell growth and activity.The use of AKT pathway blockers also restrained the growth and activity of the 2 THCA cell lines.The use of AKT pathway blockers reduced tumor volume and mass and prolonged mouse survival.Conclusions:COL4A2 can promote the growth as well as development of THCA through the AKT pathway and COL4A2 could be used as a target for THCA.
基金supported by the National Natural Science Foundation of China (52202104)the China Postdoctoral Science Foundation (2021T140433,2020M683408)+6 种基金the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China (LZY23B030002)the Quzhou Science and Technology Bureau Project (2021D006)the International Cooperation Projects of Sichuan Provincial Department of Science and Technology (2021YFH0126)the Fundamental Research Funds for the Central Universities (ZYGX2020ZB016)the Key Research and Development Program of Yunnan Province China (202103AA080019)the Yunnan Major Scientific and Technological Projects (202202AG050003)the Foundation of Key Laboratory of Advanced Technique&Preparation for Renewable Energy Materials,Ministry of Education,Yunnan Normal University (OF2022-04)。
文摘The practical application of lithium-sulfur(Li-S)batteries,as promising next-generation batteries,is hindered by their shuttle effect and the slow redox kinetics.Herein,a tungsten and molybdenum nitride heterostructure functionalized with hollow metal-organic framework-derived carbon(W_(2)N/Mo_(2)N)was proposed as the sulfur host.The hollow spherical structure provides storage space for sulfur,enhances electrical conductivity,and inhibits volume expansion.The metal atoms in the nitrides bonded with lithium polysulfides(Li PSs)through Lewis covalent bonds,enhancing the high catalytic activity of the nitrides and effectively reducing the energy barrier of Li PSs redox conversion.Moreover,the high intrinsic conductivity of nitrides and the ability of the heterostructure interface to accelerate electron/ion transport improved the Li+transmission.By leveraging the combined properties of strong adsorption and high catalytic activity,the sulfur host effectively inhibited the shuttle effect and accelerated the redox kinetics of Li PSs.High-efficiency Li+transmission,strong adsorption,and the efficient catalytic conversion activities of Li PSs in the heterostructure were experimentally and theoretically verified.The results indicate that the W_(2)N/Mo_(2)N cathode provides stable,and long-term cycling(over 2000 cycles)at 3 C with a low attenuation rate of 0.0196%per cycle.The design strategy of a twinborn nitride heterostructure thus provides a functionalized solution for advanced Li-S batteries.
基金funded by the National Natural Science Foundation of China(41971038U20A2085+3 种基金32171559U21A2005)the Fundamental Research Funds of CAF(CAFYBB2020QB004CAFYBB2021ZW002)。
文摘Nighttime sap flow(Q_(n))is an important physiological activity under which trees manage drought stress.An in-depth understanding of the characteristics of Q_(n)and its response to environmental and canopy conditions are of significance for arid area forest and water management.This study measured daily sap flow(Q_(s))of a Larix principis-rupprechtii plantation in the Liupan Mountains,northwest China during the 2017-2019 growing seasons,and separated Q_(s)into daytime sap flow(Qd)and Q_(n).Meteorological conditions(reference evapotranspiration,ETref),canopy structure(leaf area index,LAI),and soil moisture(relative soil water content,RSWC)were considered as the main biophysical factors affecting Q_(n).The structural equation model and upper boundary line method determined the effects of compound and single factors on Q_(n)The daily mean Q_(n)values during the growing seasons in 2017,2018,and 2019 were 0.024,0.026,and 0.030 mm d-1,accounting for 6.2,11.2,and 10.1%of Q_(s),respectively.Q_(n)at different canopy development phases(leaf expanding,LG;leaf expanded,LD;and defoliation,DF)over three years was LD>LG>DF.Q_(n)increased with increasing ETref,whereas the ratio of Q_(n)to Q_(s)decreased.Q_(n)did not show regular variation in the three-year growing seasons under different soil moisture conditions.ETrefand LAI mainly controlled Q_(n)by affecting Qd,whereas RSWC had no significant effect on Q_(n).Q_(n)had a positive and linear relationship with LAI and a quadratic relationship with ETref.Both explained 40%of variation in Q_(n)Meteorological and canopy conditions are important factors affecting Q_(n)on the semi-humid study site.The application of the Q_(n)model coupled with the impact of ETrefand LAI furthers understanding of the impacts of climate and forest structure change on Q_(n).
基金support of the National Key R&D Program of China(Grant No.2021YFB3200701,2018YFA0208501)the National Natural Science Foundation of China(Grant No.52272098,21875260,21671193,91963212,51773206,21731001,22272182)Beijing Natural Science Foundation(No.2202069).
文摘Conducting polymers have achieved remarkable attentions owing to their exclusive characteristics,for instance,electrical conductivity,high ionic conductivity,visual transparency,and mechanical tractability.Surface and nanostructure engineering of conjugated conducting polymers offers an exceptional pathway to facilitate their implementation in a variety of scientific claims,comprising energy storage and production devices,flexible and wearable optoelectronic devices.A two-step tactic to assemble high-performance polypyrrole(PPy)-based microsupercapacitor(MSC)is utilized by transforming the current collectors to suppress structural pulverization and increase the adhesion of PPy,and then electrochemical co-deposition of PPy-CNT nanostructures on rGO@Au current collectors is performed.The resulting fine patterned MSC conveyed a high areal capacitance of 65.9 mF cm^(−2)(at a current density of 0.1 mA cm^(−2)),an exceptional cycling performance of retaining 79%capacitance after 10,000 charge/discharge cycles at 5 mA cm^(−2).Benefiting from the intermediate graphene,current collector free PPy-CNT@rGO flexible MSC is produced by a facile transfer method on a flexible substrate,which delivered an areal capacitance of 70.25 mF cm^(−2) at 0.1 mA cm^(−2) and retained 46%of the initial capacitance at a current density of 1.0 mA cm^(−2).The flexible MSC is utilized as a skin compatible capacitive micro-strain sensor with excellent electromechanochemical characteristics.
文摘BACKGROUND In patients with schizophrenia,the brain structure and neurotransmitter levels change,which may be related to the occurrence and progression of this disease.AIM To explore the relationships between changes in neurotransmitters,brain structural characteristics,and the scores of the Positive and Negative Symptom Scale(PANSS)in patients with first-episode schizophrenia.METHODS The case group comprised 97 patients with schizophrenia,who were evaluated using the Canadian Neurological Scale and confirmed by laboratory tests at Ningbo Mental Hospital from January 2020 to July 2022.The control group comprised 100 healthy participants.For all participants,brain structural characteristics were explored by measuring brain dopamine(DA),glutamic acid(Glu),and gamma-aminobutyric acid(GABA)levels,with magnetic resonance imaging.The case group was divided into negative and positive symptom subgroups using PANSS scores for hierarchical analysis.Linear correlation analysis was used to analyze the correlations between neurotransmitters,brain structural character istics,and PANSS scores.RESULTS Patients in the case group had higher levels of DA and lower levels of Glu and GABA,greater vertical and horizontal distances between the corpus callosum and the inferior part of the fornix and larger ventricle area than patients in the control group(P<0.05).Patients with positive schizophrenia symptoms had significantly higher levels of DA,Glu,and GABA than those with negative symptoms(P<0.05).In patients with positive schizophrenia symptoms,PANSS score was significantly positively correlated with DA,vertical and horizontal distances between the corpus callosum and the infrafornix,and ventricular area,and was significantly negatively correlated with Glu and GABA(P<0.05).In patients with negative schizophrenia symptoms,PANSS score was significantly positively correlated with DA,vertical distance between the corpus callosum and the infrafornix,horizontal distance between the corpus callosum and the infrafornix,and ventricular area,and was significantly negatively correlated with Glu and GABA(P<0.05).CONCLUSION In patients with first-episode schizophrenia,DA levels increased,Glu and GABA levels decreased,the thickness of the corpus callosum increased,and these variables were correlated with PANSS scores.
基金the financial support of the National Key R&D Program of China(Grant Nos.2021YFB3200701 and 2018YFA0208501)the National Natural Science Foundation of China(Grant Nos.21875260,21671193,91963212,51773206,21731001,and 52272098)Beijing Natural Science Foundation(No.2202069)
文摘For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.Herein,we proposed interchanging interdigital Au-/MnO_(2)/polyethylene dioxythiophene stacked microsupercapacitor based on a microfabrication process followed by successive electrochemical deposition.The stacked configuration of two pseudocapacitive active microelectrodes meritoriously leads to an enhanced contact area between MnO_(2)and the conductive and electroactive layer of polyethylene dioxythiophene,hence providing excellent electron transport and diffusion pathways of electrolyte ions,resulting in increased pseudocapacitance of MnO_(2)and polyethylene dioxythiophene.The stacked quasi-solid-state microsupercapacitors delivered the maximum specific capacitance of 43 mF cm^(-2)(211.9 F cm^(-3)),an energy density of 3.8μWh cm^(-2)(at a voltage window of 0.8 V)and 5.1μWh cm^(-2)(at a voltage window of 1.0 V)with excellent rate capability(96.6%at 2 mA cm^(-2))and cycling performance of 85.3%retention of initial capacitance after 10000 consecutive cycles at a current density of 5 mA cm^(-2),higher than those of ever reported polyethylene dioxythiophene and MnO_(2)-based planar microsupercapacitors.Benefiting from the favorable morphology,bilayer microsupercapacitor is utilized as a flexible humidity sensor with a response/relaxation time superior to those of some commercially available integrated microsensors.This strategy will be of significance in developing high-performance on-chip integrated microsupercapacitors/microsensors at low cost and environment-friendly routes.
基金the National Natural Science Foundation of China(Grant Nos.12241403 and 61974061)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140054).
文摘Heterostructures of van der Waals(vdW)ferromagnetic materials have become a focal point in research of lowdimensional spintronic devices.The current direction in spin valves is commonly perpendicular to the plane(CPP).However,the transport properties of the CPP mode remain largely unexplored.In this work,current-in-plane(CIP)mode and CPP mode for CrTe_(2) thin films are carefully studied.The temperature-dependent longitudinal resistance transitions from metallic(CIP)to semiconductor behavior(CPP),with the electrical resistivity of CPP increased by five orders of magnitude.More importantly,the transport properties of the CPP can be categorized into a single-gap tunneling-through model with the activation energy(Ea)of1.34 meV/gap at 300–150 K,the variable range hopping model with a linear negative magnetoresistance at 150–20 K,and weak localization region with a nonlinear magnetic resistance below 20 K.This study explores the vertical transport in CrTe_(2) materials for the first time,contributing to understand its unique properties and to pave the way for its potential in spin valve devices.
基金financially supported by National Natural Science Foundation of China(21701083)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_3137)。
文摘Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries.
基金Science and Technology Innovation 2030 Program(2018AAA0101605).
文摘Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vulnerabilities of industrial robots were analyzed empirically,using more than three million communication packets collected with testbeds of two ABB IRB120 robots and five other robots from various original equipment manufacturers(OEMs).This analysis,guided by the confidentiality-integrity-availability(CIA)triad,uncovers robot vulnerabilities in three dimensions:confidentiality,integrity,and availability.These vulnerabilities were used to design Covering Robot Manipulation via Data Deception(CORMAND2),an automated cyber-physical attack against industrial robots.CORMAND2 manipulates robot operation while deceiving the Supervisory Control and Data Acquisition(SCADA)system that the robot is operating normally by modifying the robot’s movement data and data deception.CORMAND2 and its capability of degrading the manufacturing was validated experimentally using the aforementioned seven robots from six different OEMs.CORMAND2 unveils the limitations of existing anomaly detection systems,more specifically the assumption of the authenticity of SCADA-received movement data,to which we propose mitigations for.
基金supported by the National Natural Science Foundation of China(Grant Nos.62288101 and 62274086)the National Key R&D Program of China(Grant No.2021YFA0718802)the Jiangsu Outstanding Postdoctoral Program。
文摘Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets.This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices,thereby inducing a magnetic nonreciprocal effect,in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes.Furthermore,the polarity of the magnetic nonreciprocity is in situ reversible through the tunable magnetic patterns of artificial spin ice.Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities,offering a groundbreaking paradigm for superconducting electronics.
基金supported by the National Natural Science Foundation of China(Grant No.12241403)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140054)。
文摘Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-sized high-quality Fe_(3)GaTe_(2)thin films need to be prepared.Here,the centimeter-scale thin film samples with high crystal quality and above-room-temperature ferromagnetism with strong perpendicular magnetic anisotropy were prepared by molecular beam epitaxy technology.Furthermore,the Tc of the samples raises as the film thickness increases,and reaches 367K when the film thickness is 60 nm.This study provides material foundations for the new generation of van der Waals spintronic devices and paves the way for the commercial application of Fe_(3)GaTe_(2).
基金partially supported by National Natural Science Foundation of China(Nos.U23A2077,12175278,12205072)the National Magnetic Confinement Fusion Science Program of China(Nos.2019YFE0304002,2018YFE0303103)+2 种基金the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences(2021)the University Synergy Innovation Program of Anhui Province(No.GXXT2021-029)。
文摘A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength calibration for the VUV spectroscopy is achieved utilizing a zinc lamp.The grating angle and charge-coupled device(CCD)position are carefully calibrated for different wavelength positions.The wavelength calibration of the VUV spectroscopy is crucial for improving the accuracy of impurity spectral data,and is required to identify more impurity spectral lines for impurity transport research.Impurity spectra of EAST plasmas have also been obtained in the wavelength range of 50–300 nm with relatively high spectral resolution.It is found that the impurity emissions in the edge region are still dominated by low-Z impurities,such as carbon,oxygen,and nitrogen,albeit with the application of fulltungsten divertors on the EAST tokamak.
基金financially supported by the National Key Research and Development Program of China (Grant no.2016YFB0101208)NSFC-Liaoning Joint Funding (Grant no. U1508202)the National Natural Science Foundations of China (Grant no. 61433013 and 91434131)
文摘The electrode Pt-loading has an effect on the number of active sites and the thickness of catalyst layer,which has huge influence on the mass transfer and water management during dynamic process in PEMFCs. In this study, membrane electrode assemblies with different Pt-loadings were prepared, and PEMFCs were assembled using those membrane electrode assemblies with traditional solid plate and water transport plate as cathode flow-field plates, respectively. The performance and electrochemical surface area of cells were characterized to evaluate the membrane electrode assemblies degradation after rapid currentvariation cycles. Scanning electron microscope and transmission electron microscope were used to investigate the decay of catalyst layers and Pt/C catalyst. With the increase of Pt-loading, the performance degradation of membrane electrode assemblies will be mitigated. But higher Pt-loading means thicker catalyst layer, which leads to a longer pathway of mass transfer, and it may result in carbon material corrosion in membrane electrode assemblies. The decay of Pt/C catalyst in cathode is mainly caused by the corrosion of carbon support, and the degradation of anode Pt/C catalyst is a consequence of migration and aggregation of Pt particles. And using water transport plate is beneficial to alleviating the age of cathode Pt/C catalyst.
基金the National Magnetic Confinement Fusion Science Program of China(Nos.2017YFE0301300 and 2018YFE0301100)National Natural Science Foundation of China(Nos.11805231,11705151)+4 种基金ASIPP Science and Research Grant(No.DSJJ-17-03)Key Program of Research and Development of Hefei Science Center(No.2017HSC-KPRD002)Anhui Provincial Natural Sci-ence Foundation(Nos.1808085QA14 and 1908085J01)Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20180013)Collaborative Innovation Program of Hefei Science Center,CAS(No.2019HSC-CIP005).
文摘The dominant wavelength range of edge impurity emissions moves from the visible range to the vacuum ultraviolet(VUV)range,as heating power increasing in the Experimental Advanced Superconducting Tokamak(EAST).The measurement provided by the existing visible spectroscopies in EAST is not sufficient for impurity transport studies for high-parameters plasmas.Therefore,in this study,a VUV spectroscopy is newly developed to measure edge impurity emissions in EAST.One Seya-Namioka VUV spectrometer(McPherson 234/302)is used in the system,equipped with a concave-corrected holographic grating with groove density of 600 grooves mm-1.Impurity line emissions can be observed in the wavelength range ofλ=50-700 nm,covering VUV,near ultraviolet and visible ranges.The observed vertical range is Z=-350-350 mm.The minimum sampling time can be set to 5 ms under full vertical binning(FVB)mode.VUV spectroscopy has been used to measure the edge impurity emission for the 2019 EAST experimental campaign.Impurity spectra are identified for several impurity species,i.e.,lithium(Li),carbon(C),oxygen(O),and iron(Fe).Several candidates for tungsten(W)lines are also measured but their clear identification is very difficult due to a strong overlap with Fe lines.Time evolutions of impurity carbon emissions of CⅡat 134.5 nm and CⅢat 97.7 nm are analyzed to prove the system capability of time-resolved measurement.The measurements of the VUV spectroscopy are very helpful for edge impurity transport study in the high-parameters plasma in EAST.
基金National Key Point Research and Invention Program of the Thirteenth(Program Nos.2018YFB0105601 and 2017YFB0102801).
文摘The nanofiber electrodes have been considered as promising candidates for commercial proton exchange membrane fuel cells due to their high catalyst utilization and enhanced mass transport efficiency.However,for the first time our research determined that the nanofiber electrodes were restricted by the poor chemical stability of the polymer carriers.To gain further insight into the durability of nanofiber electrodes,both cyclic voltammetry aging tests and Fenton’s tests were conducted.Similar to previous reports,our research demonstrated that nanofiber electrodes showed remarkable stability in the cyclic voltammetry aging process.However,Fenton’s tests indicated that nanofibers in the electrodes would decompose easily while being attacked by reactive oxygen species such as HO·or HOO·,which greatly limits their practicability and reliability.The different performances under the two tests also demonstrated that the cyclic voltammetry aging protocols,which have been applied extensively,cannot well mirror the real operating conditions of fuel cells.
基金Project supported by the National Key Research and Development Program,China(Grant No.2017YFB0402800)the Key Research and Development Program of Guangdong Province,China(Grant Nos.2019B010128002 and 2020B010173001)+4 种基金the National Natural Science Foundation of China(Grant No.U1601210)the Natural Science Foundation of Guangdong Province,China(Grant No.2015A030312011)the Open Project of Key Laboratory of Microelectronic Devices and Integrated Technology(Grant No.202006)the Science and Technology Plan of Guangdong Province,China(Grant No.2017B010112002)the China Postdoctoral Science Foundation(Grant No.2019M663233).
文摘Stress voltages on time-dependent breakdown characteristics of GaN MIS-HEMTs during negative gate bias stress (with VGS < 0, VD = VS = 0) and off-state stress (VG < VTh, VDS > 0, VS = 0) are investigated. For negative bias stress, the breakdown time distribution (β) decreases with the increasing negative gate voltage, while β is larger for higher drain voltage at off-state stress. Two humps in the time-dependent gate leakage occurred under both breakdown conditions, which can be ascribed to the dielectric breakdown triggered earlier and followed by the GaN layer breakdown. Combining the electric distribution from simulation and long-term monitoring of electric parameter, the peak electric fields under the gate edges at source and drain sides are confirmed as the main formation locations for per-location paths during negative gate voltage stress and off-state stress, respectively.