期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Research progress on silicon/carbon composite anode materials for lithium-ion battery 被引量:31
1
作者 Xiaohui Shen Zhanyuan Tian +5 位作者 Ruijuan Fan Le Shao Dapeng Zhang Guolin Cao liang kou Yangzhi Bai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1067-1090,共24页
Silicon (Si) has been considered as one of the most promising anode material for tHe next generation lithium-ion batteries (LIBs) with high energy densities, due to its high theoretical capacity, abundant availabi... Silicon (Si) has been considered as one of the most promising anode material for tHe next generation lithium-ion batteries (LIBs) with high energy densities, due to its high theoretical capacity, abundant availability and environmental friendliness. However. silicon materials with low intrinsic electric and ionic conductivity suffer from huge volume variation during lithiation/delithiation processes leading to the pulverization of Si and subsequently resulting in severe capacity fading of the electrodes. Coupling of Si with carbon (C) realizes a favorable combination of the two materials properties, such as high lithiation capacity of Si and excellent mechanical and conductive properties of C. making silicon/carbon composite (Si/C) ideal candidates for LIBs anodes. In this review, recent progresses of Si/C materials utilized in LIBs are summarized in terms of structural design principles, material synthesis methods, morphological characteristics and electrochemical performances by highlighting the material structures. The mechanisms behind the performance enhancement are also discussed. Moreover, other factors that affect the performance of Si/C anodes, such as prelithiation, electrolyte additives, and binders, are also discussed. We aim to present a full scope of the Si/C-based anodes, and help understand and design future structures of Si/C anodes in LIBs, 展开更多
关键词 Lithium-ion batteries Anodes Silicon/carbon composite
下载PDF
Nitrogen additions inhibit nitrification in acidic soils in a subtropical pine plantation: effects of soil pH and compositional shifts in microbial groups 被引量:5
2
作者 liang kou Xinyu Zhang +3 位作者 Huimin Wang Hao Yang Wei Zhao Shenggong Li 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第2期669-678,共10页
Plantation forests play a pivotal role in carbon sequestration in terrestrial ecosystems, but enhanced nitrogen(N) deposition in these forests may affect plantation productivity by altering soil N cycling. Hence,under... Plantation forests play a pivotal role in carbon sequestration in terrestrial ecosystems, but enhanced nitrogen(N) deposition in these forests may affect plantation productivity by altering soil N cycling. Hence,understanding how simulated N deposition affects the rate and direction of soil N transformation is critically important in predicting responses of plantation productivity in the context of N loading. This study reports the effects of N addition rate(0, 40, and 120 kg N ha^(-1) a^(-1)) and form(NH_4Cl vs. NaNO_3) on net N mineralization and nitrification estimated by in situ soil core incubation and on-soil microbial biomass determined by the phospholipid fatty acid(PLFA) method in a subtropical pine plantation. N additions had no influences on net N mineralization throughout the year. Net nitrification rate was significantly reduced by additions of both NH_4Cl(71.5) and NaNO_3(47.1%) during the active growing season, with the stronger inhibitory effect at high N rates. Soil pH was markedly decreased by 0.16 units by NH_4Cl additions. N inputs significantly decreased the ratio of fungal-to-bacterial PLFAs on average by 0.28(49.1%) in November. Under NH_4Cl additions, nitrification was positively related with fungal biomass and soil pH. Under NaNO_3 additions,nitrification was positively related with all microbial groups except for bacterial biomass. We conclude that simulated N deposition inhibited net nitrification in the acidic soils of a subtropical plantation forest in China,primarily due to accelerated soil acidification and compositional shifts in microbial functional groups. These findings may facilitate a better mechanistic understanding of soil N cycling in the context of N loading. 展开更多
关键词 ACIDIFICATION Atmospheric NITROGEN deposition MICROBIAL functional group NITRIFICATION Soil NITROGEN transformation
下载PDF
A Mini Review on Nanocarbon-Based 1D Macroscopic Fibers:Assembly Strategies and Mechanical Properties 被引量:6
3
作者 liang kou Yingjun Liu +4 位作者 Cheng Zhang Le Shao Zhanyuan Tian Zengshe Deng Chao Gao 《Nano-Micro Letters》 SCIE EI CAS 2017年第4期175-192,共18页
Nanocarbon-based materials, such as carbon nanotubes(CNTs) and graphene have been attached much attention by scientific and industrial community. As two representative nanocarbon materials, one-dimensional CNTs and tw... Nanocarbon-based materials, such as carbon nanotubes(CNTs) and graphene have been attached much attention by scientific and industrial community. As two representative nanocarbon materials, one-dimensional CNTs and twodimensional graphene both possess remarkable mechanical properties. In the past years, a large amount of work have been done by using CNTs or graphene as building blocks for constructing novel, macroscopic, mechanically strong fibrous materials. In this review, we summarize the assembly approaches of CNT-based fibers and graphene-based fibers in chronological order, respectively. The mechanical performances of these fibrous materials are compared, and the critical influences on the mechanical properties are discussed. Personal perspectives on the fabrication methods of CNT-and graphene-based fibers are further presented. 展开更多
关键词 One dimensional Macroscopic architectures Carbon nanotubes Graphene fibers Assembly strategies Mechanical performance
下载PDF
Click chemistry approach to functionalize two-dimensional macromolecules of graphene oxide nanosheets 被引量:6
4
作者 liang kou Hongkun He Chao Gao 《Nano-Micro Letters》 SCIE EI CAS 2010年第3期177-183,共7页
A facile "click chemistry" approach to functionalize 2D macromolecules of graphene oxide nanosheets with poly(ethylene glycol) of different molecular weights,polystyrene,palmitic acid and various amino acids... A facile "click chemistry" approach to functionalize 2D macromolecules of graphene oxide nanosheets with poly(ethylene glycol) of different molecular weights,polystyrene,palmitic acid and various amino acids was presented.FTIR,TGA,Raman spectroscopy,XPS,XRD,TEM,AFM and SEM were utilized to characterize the products.High degree of functionalization was achieved on the flat surfaces of graphene oxide,affording polymer-grafted 2D brushes and amino acids-immobilized nanosheets,which show improved solubility in organic solvents.The click chemistry strategy reported herein provides a facile and general method for functionalization of graphene oxide with macromolecules and desired biomolecules. 展开更多
关键词 Graphene Click chemistry Chemical modification PEG Amino acids
下载PDF
A Lightweight Three-Factor User Authentication Protocol for the Information Perception of IoT 被引量:1
5
作者 liang kou Yiqi Shi +2 位作者 Liguo Zhang Duo Liu Qing Yang 《Computers, Materials & Continua》 SCIE EI 2019年第2期545-565,共21页
With the development of computer hardware technology and network technology,the Internet of Things as the extension and expansion of traditional computing network has played an increasingly important role in all profe... With the development of computer hardware technology and network technology,the Internet of Things as the extension and expansion of traditional computing network has played an increasingly important role in all professions and trades and has had a tremendous impact on people lifestyle.The information perception of the Internet of Things plays a key role as a link between the computer world and the real world.However,there are potential security threats in the Perceptual Layer Network applied for information perception because Perceptual Layer Network consists of a large number of sensor nodes with weak computing power,limited power supply,and open communication links.We proposed a novel lightweight authentication protocol based on password,smart card and biometric identification that achieves mutual authentication among User,GWN and sensor node.Biometric identification can increase the nonrepudiation feature that increases security.After security analysis and logical proof,the proposed protocol is proven to have a higher reliability and practicality. 展开更多
关键词 AUTHENTICATION BIOMETRICS smart card multi-factor
下载PDF
Chlorogenic acid alters the voltage-gated potassium channel currents of trigeminal ganglion neurons 被引量:3
6
作者 Yu-Jiao Zhang Xiao-Wen Lu +5 位作者 Ning Song liang kou Min-Ke Wu Fei Liu Hang Wang Jie-Fei Shen 《International Journal of Oral Science》 SCIE CAS CSCD 2014年第4期233-240,共8页
Chlorogenic acid(5-caffeoylquinic acid, CGA) is a phenolic compound that is found ubiquitously in plants, fruits and vegetables and is formed via the esterification of caffeic acid and quinic acid. In addition to it... Chlorogenic acid(5-caffeoylquinic acid, CGA) is a phenolic compound that is found ubiquitously in plants, fruits and vegetables and is formed via the esterification of caffeic acid and quinic acid. In addition to its notable biological functions against cardiovascular diseases, type-2 diabetes and inflammatory conditions, CGA was recently hypothesized to be an alternative for the treatment of neurological diseases such as Alzheimer's disease and neuropathic pain disorders. However, its mechanism of action is unclear.Voltage-gated potassium channel(Kv) is a crucial factor in the electro-physiological processes of sensory neurons. Kv has also been identified as a potential therapeutic target for inflammation and neuropathic pain disorders. In this study, we analysed the effects of CGA on the two main subtypes of Kv in trigeminal ganglion neurons, namely, the IK,Aand IK,Vchannels. Trigeminal ganglion(TRG)neurons were acutely disassociated from the rat TRG, and two different doses of CGA(0.2 and 1 mmol·L21) were applied to the cells.Whole-cell patch-clamp recordings were performed to observe alterations in the activation and inactivation properties of the IK,Aand IK,Vchannels. The results demonstrated that 0.2 mmol·L21CGA decreased the peak current density of IK,A. Both 0.2 mmol·L21and1 mmol·L21CGA also caused a significant reduction in the activation and inactivation thresholds of IK,Aand IK,V. CGA exhibited a strong effect on the activation and inactivation velocities of IK,Aand IK,V. These findings provide novel evidence explaining the biological effects of CGA, especially regarding its neurological effects. 展开更多
关键词 chlorogenic acid trigeminal ganglion neuron voltage-gated potassium channel whole-cell patch clamp
下载PDF
ZnO Interface Modified LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)Toward Boosting Lithium Storage 被引量:1
7
作者 Yunyan Li Xifei Li +10 位作者 Junhua Hu Wen Liu Hirbod Maleki Kheimeh Sari Dejun Li Qian Sun liang kou Zhanyuan Tian Le Shao Cheng Zhang Jiujun Zhang Xueliang Sun 《Energy & Environmental Materials》 SCIE 2020年第4期522-528,共7页
In this work,an amorphous ZnO was coated on LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM)using a sol-gel strategy method.The NCM coated with 1 wt.%Zn O and a thickness of about 3 nm exhibits an improved cycling performance,acc... In this work,an amorphous ZnO was coated on LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM)using a sol-gel strategy method.The NCM coated with 1 wt.%Zn O and a thickness of about 3 nm exhibits an improved cycling performance,accompanied by a lower capacity fading(from 194.8 to 133.8 m Ah g^(-1),i.e.,68%)than that of the pristine one(i.e.,only 34%)after 300 cycles at 0.2 C.The cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)indicate that the Zn O coating can improve extraction/insertion of Li+and inhibit the increase in impedance of the NCM cathode material.This approach may benefit the performance improvement of the Ni-rich cathode materials in Lithium-ion batteries(LIBs). 展开更多
关键词 cathode materials LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2) lithium-ion batteries ZnO coating
下载PDF
Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods
8
作者 Min-Ke Wu Ning Song +5 位作者 Fei Liu liang kou Xiao-Wen Lu Min Wang Hang Wang Jie-Fei Shen 《International Journal of Oral Science》 SCIE CAS CSCD 2016年第3期155-163,共9页
The keeper and cast dowel-coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex micro... The keeper and cast dowel-coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt-chromium, CoCr; silver-palladium-gold, PdAu; gold-platinum, AuPt) using a laser- welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr-keeper complex but not to the AuPt-keeper complex. Only the keeper area of cast CoCr-keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements, Both cast and laser-welded AuPt-keeper complexes had the highest free corrosion potential, followed by the PdAu-keeper complex. We concluded that although the corrosion resistance of the CoCr-keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr- and PdAu-keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt-keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area. 展开更多
关键词 cobalt-chromium alloy corrosion behaviour dental magnets gold-platinum alloy magnetic attachment silver-palladium-gold alloy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部