We consider transcendental merornorphic solutions with N(r, f) = S(r, f) of the following type of nonlinear differential equations:f^n + Pn-2(f) = p1(z)e~α1(z) + p2(z)^α2(z),where n ≥2 is an intege...We consider transcendental merornorphic solutions with N(r, f) = S(r, f) of the following type of nonlinear differential equations:f^n + Pn-2(f) = p1(z)e~α1(z) + p2(z)^α2(z),where n ≥2 is an integer, Pn-2(f) is a differential polynomial in f of degree not greater than n-2 with small functions of f as its coefficients, p1(z), p2(z) are nonzero small functions of f1 and α1(z), α2(z) are nonconstant entire functions. In particular, we give out the conditions for ensuring the existence of meromorphic solutions and their possible forms of the above equation. Our results extend and improve some known results obtained most recently.展开更多
In this paper, we prove the following result: Let f(z) be a transcendental entire function, Q(z) ≡ 0 be a small function of f(z), and n ≥ 2 be a positive integer. If fn(z) and(fn(z)) share Q(z) CM, th...In this paper, we prove the following result: Let f(z) be a transcendental entire function, Q(z) ≡ 0 be a small function of f(z), and n ≥ 2 be a positive integer. If fn(z) and(fn(z)) share Q(z) CM, then f(z) = ce 1 nz, where c is a nonzero constant. This result extends Lv's result from the case of polynomial to small entire function.展开更多
Suppose a quadratic rational map has a Siegel disk and a parabolic fixed point. If the rotation number of the Siegel disk is an irrational of bounded type, then the Julia set of the map is shallow. This implies that i...Suppose a quadratic rational map has a Siegel disk and a parabolic fixed point. If the rotation number of the Siegel disk is an irrational of bounded type, then the Julia set of the map is shallow. This implies that its Hausdorff dimension is strictly less than two.展开更多
基金Sponsored by NNSF of China(Grant No.11671191)Natural Science Foundation of Shanghai(Grant No.17ZR1402900)
文摘We consider transcendental merornorphic solutions with N(r, f) = S(r, f) of the following type of nonlinear differential equations:f^n + Pn-2(f) = p1(z)e~α1(z) + p2(z)^α2(z),where n ≥2 is an integer, Pn-2(f) is a differential polynomial in f of degree not greater than n-2 with small functions of f as its coefficients, p1(z), p2(z) are nonzero small functions of f1 and α1(z), α2(z) are nonconstant entire functions. In particular, we give out the conditions for ensuring the existence of meromorphic solutions and their possible forms of the above equation. Our results extend and improve some known results obtained most recently.
基金Supported by the Fundamental Research Funds for the Central Universities(Grant No.2011QNA25)National Natural Science Foundation of China(Grant No.11271179)
文摘In this paper, we prove the following result: Let f(z) be a transcendental entire function, Q(z) ≡ 0 be a small function of f(z), and n ≥ 2 be a positive integer. If fn(z) and(fn(z)) share Q(z) CM, then f(z) = ce 1 nz, where c is a nonzero constant. This result extends Lv's result from the case of polynomial to small entire function.
基金Supported by National Natural Science Foundation of China(Grant Nos.10871089 and 11271179)
文摘Suppose a quadratic rational map has a Siegel disk and a parabolic fixed point. If the rotation number of the Siegel disk is an irrational of bounded type, then the Julia set of the map is shallow. This implies that its Hausdorff dimension is strictly less than two.