期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis and experimental study on resistance-increasing behavior of composite high efficiency autonomous inflow control device
1
作者 liang-liang dong Yu-Lin Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1290-1304,共15页
Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks th... Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production. 展开更多
关键词 Water control Flow separation Flow resistance-increasing AICD device Simulation and experiment
下载PDF
Nkx2-1:a novel tumor biomarker of lung cancer 被引量:3
2
作者 LiYANG Min LIN +4 位作者 Wen-jing RUAN liang-liang dong En-guo CHEN Xiao-hong WU Ke-jing YING 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2012年第11期855-866,共12页
Nkx2-1 (Nkx homeobox-1 gene), also known as TTF-1 (thyroid transcription factor-1), is a tissue-specific transcription factor of the thyroid, lung, and ventral forebrain. While it has been shown to play a critical rol... Nkx2-1 (Nkx homeobox-1 gene), also known as TTF-1 (thyroid transcription factor-1), is a tissue-specific transcription factor of the thyroid, lung, and ventral forebrain. While it has been shown to play a critical role in lung development and lung cancer differentiation and morphogenesis, molecular mechanisms mediating Nkx2-1 cell- and tissue-specific expression in normal and cancerous lungs have yet to be fully elucidated. The recent identification of prognostic biomarkers in lung cancer, particularly in lung adenocarcinoma (ADC), and the different reactivity of patients to chemotherapeutic drugs have opened new avenues for evaluating patient survival and the development of novel effective therapeutic strategies. The function of Nkx2-1 as a proto-oncogene was recently characterized and the gene is implicated as a contributory factor in lung cancer development. In this review, we summarize the role of this transcription factor in the development, diagnosis, and prognosis of lung cancer in the hope of providing insights into the utility of Nkx2-1 as a novel biomarker of lung cancer. 展开更多
关键词 Nkx2-1 TTF-1 Lung cancer BIOMARKER DIAGNOSIS PROGNOSIS THERAPY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部