The chlorophyll fluorescence (CF) signature emitted from vegetation provides an abundance of information regarding photosynthetics activity and has been used as a powerful tool to obtain physiological information of...The chlorophyll fluorescence (CF) signature emitted from vegetation provides an abundance of information regarding photosynthetics activity and has been used as a powerful tool to obtain physiological information of plant leaves in a non-invasive manner. CF is difficult to quantify because the CF signal is obscured by reflected light. In the present study, the apparent reflectance spectra of wheat (Triticum aestivum L.) leaves were measured under illuminations with and without filtering by three specially designed long-wave pass edge filters; the cut-off wavelengths of the three filters were 653.8, 678.2, and 694. l nm at 50% of maximum transmittance. The CF spectra could be derived as the reflectance difference spectra of the leaves under illuminations with and without the long wave pass edge filters. The ratio of the reflectance difference at 685 and 740 nm (Dif685/Dif740) was linear correlated with the CF parameters (maximal photochemical efficiency Fv/Fm, and the yield of quantum efficiency) measured by the modulated fluorometer. In addition, the ratio reflected the water stress status of the wheat leaf, which was very high when water deficiency was serious. This method provides a new approach for detecting CF and the physiological state of crops.展开更多
Satellite-based remote sensed phenology has been widely used to assess global climate change.However,it is constrained by uncertain linkages with photo-synthesis activity.Two dynamic threshold methods were employed to...Satellite-based remote sensed phenology has been widely used to assess global climate change.However,it is constrained by uncertain linkages with photo-synthesis activity.Two dynamic threshold methods were employed to retrieve spring phenology metrics from four Moderate Resolution Imaging Spectro-radiometer(MODIS)products,including fraction of Absorbed Photosyntheti-cally Active Radiation(fAPAR),Leaf Area Index(LAI),Normalized Difference Vegetation Index(NDVI),and Enhanced Vegetation Index(EVI)for three temperate deciduous broadleaf forests in North America between 2001 and 2009.These MODIS-based spring phenology metrics were subsequently linked to the photosynthetic curves(daily gross primary productivity,GPP)measured by an eddy covariance flux tower.The 20% dynamic threshold spring onset metrics from MODIS products were closer to the photosynthesis onset metrics at the date of 2% GPP increase for NDVI and fAPAR,and closer to the date of 5%and 10% increase of GPP for EVI and LAI,respectively.The 50% dynamic threshold onset metrics were closer to the photosynthesis onset metrics at the date of 10%GPP increase for NDVI,and closer to the date of 20% GPP increase for fAPAR,LAI and EVI,respectively.These results can improve our knowledge on the photosynthesis activity status of remotely sensed spring phenology metrics.展开更多
文摘The chlorophyll fluorescence (CF) signature emitted from vegetation provides an abundance of information regarding photosynthetics activity and has been used as a powerful tool to obtain physiological information of plant leaves in a non-invasive manner. CF is difficult to quantify because the CF signal is obscured by reflected light. In the present study, the apparent reflectance spectra of wheat (Triticum aestivum L.) leaves were measured under illuminations with and without filtering by three specially designed long-wave pass edge filters; the cut-off wavelengths of the three filters were 653.8, 678.2, and 694. l nm at 50% of maximum transmittance. The CF spectra could be derived as the reflectance difference spectra of the leaves under illuminations with and without the long wave pass edge filters. The ratio of the reflectance difference at 685 and 740 nm (Dif685/Dif740) was linear correlated with the CF parameters (maximal photochemical efficiency Fv/Fm, and the yield of quantum efficiency) measured by the modulated fluorometer. In addition, the ratio reflected the water stress status of the wheat leaf, which was very high when water deficiency was serious. This method provides a new approach for detecting CF and the physiological state of crops.
基金The authors gratefully acknowledge financial support provided for this research by the National Natural Science Foundation of China(41222008,91125003)the External Cooperation Program of the Chinese Academy of Sciences(GJH21123).
文摘Satellite-based remote sensed phenology has been widely used to assess global climate change.However,it is constrained by uncertain linkages with photo-synthesis activity.Two dynamic threshold methods were employed to retrieve spring phenology metrics from four Moderate Resolution Imaging Spectro-radiometer(MODIS)products,including fraction of Absorbed Photosyntheti-cally Active Radiation(fAPAR),Leaf Area Index(LAI),Normalized Difference Vegetation Index(NDVI),and Enhanced Vegetation Index(EVI)for three temperate deciduous broadleaf forests in North America between 2001 and 2009.These MODIS-based spring phenology metrics were subsequently linked to the photosynthetic curves(daily gross primary productivity,GPP)measured by an eddy covariance flux tower.The 20% dynamic threshold spring onset metrics from MODIS products were closer to the photosynthesis onset metrics at the date of 2% GPP increase for NDVI and fAPAR,and closer to the date of 5%and 10% increase of GPP for EVI and LAI,respectively.The 50% dynamic threshold onset metrics were closer to the photosynthesis onset metrics at the date of 10%GPP increase for NDVI,and closer to the date of 20% GPP increase for fAPAR,LAI and EVI,respectively.These results can improve our knowledge on the photosynthesis activity status of remotely sensed spring phenology metrics.