期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Expression pattern of neuregulin-1 type Ⅲ during the development of the peripheral nervous system 被引量:2
1
作者 liang-liang huang Zhong-yang Liu +1 位作者 Jing-hui huang Zhuo-jing Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第1期65-70,共6页
Neuregulin-1 type Ⅲ is a key regulator in Schwann cell proliferation, committing to a myelinat- ing fate and regulating myelin sheath thickness. However, the expression pattern of neuregulin- 1 type III in the periph... Neuregulin-1 type Ⅲ is a key regulator in Schwann cell proliferation, committing to a myelinat- ing fate and regulating myelin sheath thickness. However, the expression pattern of neuregulin- 1 type III in the peripheral nervous system during developmental periods (such as the premyelin- ating stage, myelinating stage and postmyelinating stage) has rarely been studied. In this study, dorsal root ganglia were isolated from rats between postnatal day 1 and postnatal day 56. The expression pattern of neuregulin-1 type III in dorsal root ganglia neurons at various develop- mental stages were compared by quantitative real-time polymerase chain reaction, western blot assay and immunofluorescent staining. The expression of neuregulin-I type Ⅲ mRNA reached its peak at postnatal day 3 and then stabilized at a relative high expression level from postnatal day 3 to postnatal day 56. The expression of neuregulin-1 type III protein increased gradually from postnatal day 1, reached a peak at postnatal day 28, and then decreased at postnatal day 56. Immunofluorescent staining results showed a similar tendency to western blot assay results. Experimental findings indicate that the expression of neuregulin-1 type III in rat dorsal root ganglion was increased during the premyelinating (from postnatal day 2 to postnatal day 5) and myelinating stage (from postnatal day 5 to postnatal day 10), but remained at a high level in the postmyelinating stage (after postnatal day 10). 展开更多
关键词 nerve regeneration Schwann cells dorsal root ganglia myelin sheath neuregulin-1type peripheral nervous system quantitative real-time polymerase chain reaction western blot immunofluorescent staining postmyelinating rats NSFC grants neural regeneration
下载PDF
Effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl_(11)O_(19) thermal barrier coatings 被引量:3
2
作者 liang-liang huang Hui-min Meng +2 位作者 Li-kang Liang Sen Li Jin-hui Shi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第10期1050-1059,共10页
LaMgAl11O19thermal barrier coatings(TBCs) were applied to carbon steels with a NiCoCrAlY bond coat by plasma spraying. The effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O1... LaMgAl11O19thermal barrier coatings(TBCs) were applied to carbon steels with a NiCoCrAlY bond coat by plasma spraying. The effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O19TBCs were investigated in 3.5wt% Na Cl solution using polarization curves, electrochemical impedance spectroscopy(EIS), scanning electron microscopy(SEM), and X-ray diffraction(XRD). The results show that a large number of cracks are found in the LaMgAl11O19TBCs after the samples are heat-treated, including some through-thickness cracks. The corrosion forms of the as-sprayed and heat-treated TBCs are uniform corrosion and pitting corrosion, respectively. The as-sprayed TBCs exhibit three EIS time constants after being immersed for less than 7 d, and then a new time constant appears because of steel substrate corrosion. When the immersion time is increased to 56 d, a Warburg impedance(W) component appears in the EIS data. The EIS data for the heat-treated TBCs exhibit only two time constants after the samples are immersed for less than 14 d, and a new time constant appears when the immersion time is increased further. The heat treatment reduces the corrosion resistance of carbon steel coated with LaMgAl11O19TBCs. The corrosion products are primarily γ-Fe OOH and Fe3O4. 展开更多
关键词 thermal barrier coatings carbon steel corrosion PL
下载PDF
Crystallization behavior of plasma-sprayed lanthanide magnesium hexaaluminate coatings 被引量:3
3
作者 liang-liang huang Hui-min Meng Jing Tang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第12期1247-1253,共7页
LaMgAl11O19 thermal barrier coatings (TBCs) were prepared by atmospheric plasma spraying. The crystallization behavior of the coatings and the synthesis mechanism of LaMgAl11O19 powders were researched. The results ... LaMgAl11O19 thermal barrier coatings (TBCs) were prepared by atmospheric plasma spraying. The crystallization behavior of the coatings and the synthesis mechanism of LaMgAl11O19 powders were researched. The results showed that the plasma-sprayed coatings conmined some amorphous phase, and LaMgAl11O19 powders were partially decomposed into Al2O3, LaAlO3, and MgAl2O4 in the plasma spraying process. The amorphous phase was reerystallized at a temperature of approximately 1174.9℃, at which level the decomposed Al2O3, LaAl2O3, and MgAl2O4 reacted again. The resynthesis temperature of LaMgAl11O19 in the plasma-sprayed coatings was lower than that of LaMgAl11O19 in the original raw powders. The synthesis mechanism of LaMgAl11O19 powders can be summarized as follows: during the first part of the overall reaction, La2O3 reacts with Al2O3 to form LaAl2O3 at approximately 900℃, and then LaAl2O3 further reacts with Al2O3 and MgAl2O4 to produce LaMgAl11O19 at approximately 1200℃. 展开更多
关键词 thermal barrier coatings HEXAALUMINATES plasma spraying CRYSTALLIZATION
下载PDF
Effect of hydrogen-storage pressure on the detonation characteristics of emulsion explosives sensitized by glass microballoons 被引量:1
4
作者 Ji-ping Chen Hong-hao Ma +2 位作者 Yi-xin Wang liang-liang huang Zhao-wu Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第5期747-754,共8页
In this study,hydrogen-storage glass microballoons were introduced into emulsion explosives to improve the detonation performance of the explosives.The effect of hydrogen-storage pressure on the detonation characteris... In this study,hydrogen-storage glass microballoons were introduced into emulsion explosives to improve the detonation performance of the explosives.The effect of hydrogen-storage pressure on the detonation characteristics of emulsion explosives was systematically investigated.Detonation velocity experiments shows that the change of sensitizing gas and the increase of hydrogen pressure have different effects on the detonation velocity.The experimental parameters of underwater explosion increase first and then decreases with the increase of hydrogen pressure.The decrease of these parameters indicates that the strength of glass microballoons is the limiting factor to improve the detonation performance of hydrogen-storage emulsion explosives.Compared with the traditional emulsion explosives,the maximum peak pressure of shock wave of hydrogen-storage emulsion explosives increases by 10.6%at 1.0 m and 10.2%at 1.2 m,the maximum values of shock impulse increase by 5.7%at 1.0 m and 19.4%at 1.2 m.The stored hydrogen has dual effects of sensitizers and energetic additives,which can improve the energy output of emulsion explosives. 展开更多
关键词 Emulsion explosives Hydrogen-storage pressure Glass microballoons Underwater explosion
下载PDF
Excited state biexcitons in monolayer WSe_(2)driven by vertically grown graphene nanosheets with high-density electron trapping edges
5
作者 Bo Wen Da-Ning Luo +5 位作者 Ling-Long Zhang Xiao-Lin Li Xin Wang liang-liang huang Xi Zhang Dong-Feng Diao 《Frontiers of physics》 SCIE CSCD 2023年第3期103-112,共10页
Interface engineering in atomically thin transition metal dichalcogenides(TMDs)is becoming an important and powerful technique to alter their properties,enabling new optoelectronic applications and quantum devices.Int... Interface engineering in atomically thin transition metal dichalcogenides(TMDs)is becoming an important and powerful technique to alter their properties,enabling new optoelectronic applications and quantum devices.Interface engineering in a monolayer WSe_(2)sample via introduction of high-density edges of standing structured graphene nanosheets(GNs)is realized.A strong photoluminescence(PL)emission peak from intravalley and intervalley trions at about 750 nm is observed at the room temperature,which indicated the heavily p-type doping of the monolayer WSe_(2)/thin graphene nanosheet-embedded carbon(TGNEC)film heterostructure.We also successfully triggered the emission of biexcitons(excited state biexciton)in a monolayer WSe_(2),via the electron trapping centers of edge quantum wells of a TGNEC film.The PL emission of a monolayer WSe_(2)/GNEC film is quenched by capturing the photoexcited electrons to reduce the electron-hole recombination rate.This study can be an important benchmark for the extensive understanding of light–matter interaction in TMDs,and their dynamics. 展开更多
关键词 excited state biexcitons monolayer WSe_(2) vertically graphene electron trapping edges
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部