期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel
1
作者 Qingdong ZENG Fan DENG +7 位作者 Zhiheng ZHU Yun TANG Boyun WANG Yongjun XIAO liangbin xiong Huaqing YU Lianbo GUO Xiangyou LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第3期46-51,共6页
In this paper, we developed a portable laser-induced breakdown spectroscopy(LIBS) using an optical fiber to deliver laser energy and used it to quantitatively analyze minor elements in steel.The R^2 factors of calibra... In this paper, we developed a portable laser-induced breakdown spectroscopy(LIBS) using an optical fiber to deliver laser energy and used it to quantitatively analyze minor elements in steel.The R^2 factors of calibration curves of elements Mn, Ti, V, and Cr in pig iron were 0.9965,0.9983, 0.9963, and 0.991, respectively, and their root mean square errors of cross-validation were 0.0501, 0.0054, 0.0205, and 0.0245 wt%, respectively. Six test samples were used for the validation of the performance of the calibration curves established by the portable LIBS. The average relative errors of elements Mn, Ti, V, and Cr were 2.5%, 11.7%, 13.0%, and 5.6%,respectively. These results were comparable with most results reported in traditional LIBS in steel or other matrices. However, the portable LIBS is flexible, compact, and robust, providing a promising prospect in industrial application. 展开更多
关键词 LASER-INDUCED BREAKDOWN spectroscopy optical fiber QUANTITATIVE ANALYSES MINOR element
下载PDF
Manipulating the morphology of CdS/Sb_(2)S_(3) heterojunction using a Mg-doped tin oxide buffer layer for highly efficient solar cells
2
作者 Jiashuai Li liangbin xiong +9 位作者 Xuzhi Hu Jiwei Liang Cong Chen Feihong Ye Jing Li Yongjie Liu Wenlong Shao Ti Wanga Chen Tao Guojia Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期374-381,I0010,共9页
Antimony sulfide(Sb_(2)S_(3))is an appealing semiconductor as light absorber for solar cells due to its high absorption coefficient,appropriate band gap(~1.7 e V)and abundance of constituent elements.However,power con... Antimony sulfide(Sb_(2)S_(3))is an appealing semiconductor as light absorber for solar cells due to its high absorption coefficient,appropriate band gap(~1.7 e V)and abundance of constituent elements.However,power conversion efficiency(PCE)of Sb_(2)S_(3)-based solar cells still lags much behind the theoretically predicted due to the imperfect energy level alignment at the charge transporting layer/Sb_(2)S_(3)interfaces and hence severe charge recombination.Herein,we insert a high-temperature sintered magnesium(Mg)-doped tin oxide(SnO_(2))layer between cadmium sulfide(Cd S)and fuorine doped tin oxide to form a cascaded energy level alignment and thus mitigate interfacial charge recombination.Simultaneously,the inserted Mg-doped Sn O_(2)buffer layer facilitates the growth of the neibouring Cd S film with orientation followed by Sb_(2)S_(3)film with larger grains and fewer pinholes.Consequently,the resultant Sb_(2)S_(3)solar cells with Mg-doped SnO_(2)deliver a champion PCE of 6.31%,22.8%higher than those without a buffer layer.Our work demonstrates that deliberate absorber growth as well as efficient hole blocking upon an appropriate buffer layer is viable in obtaining solution-processed Sb_(2)S_(3)solar cells with high performance. 展开更多
关键词 MORPHOLOGY Sb_(2)S_(3)solar cells Mg-doped tin oxide Orientation
下载PDF
Stability and optoelectronic property of lead-free halide double perovskite Cs_(2)B′BiI_(6)(B′=Li,Na and K)
3
作者 Yunhui Liu Wei Wang +2 位作者 Feng Xiao liangbin xiong Xing Ming 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期630-637,共8页
Although lead-based perovskite solar cells have achieved more than 25%power conversion efficiency,the toxicity of lead and instability are still urgent problems faced in industrial application.Lead-free halide double ... Although lead-based perovskite solar cells have achieved more than 25%power conversion efficiency,the toxicity of lead and instability are still urgent problems faced in industrial application.Lead-free halide double perovskite(DP)materials are promising candidates to resolve these issues.Based on the density functional theory,we explore the geometric stability,thermodynamic stability,mechanical stability,electronic structures,and optical properties of theCs_(2)B 0BiI_(6)(B 0=Li,Na and K)DP materials.By analyzing the tolerance factor and octahedral factor,we find the geometric stabilities ofCs_(2)NaBiI_(6) andCs_(2)KBiI_(6) DPs are better thanCs_(2)LiBiI_(6).By calculating the total energy,formation energy and decomposition energy,we propose that the most favorable structure ofCs_(2)B 0BiI_(6) is the orthorhombic phase,andCs_(2)LiBiI_(6) is less stable relative to the other two counterparts from an energetic viewpoint.Mechanical stability evaluations reveal that the orthorhombicCs_(2)LiBiI_(6) material is less stable relative to the isostructuralCs_(2)NaBiI_(6) andCs_(2)KBiI_(6) DPs.The mechanical property calculations indicate that theCs_(2)B 0BiI_(6) DPs possess good ductility,which can be used as flexible materials.Electronic structures and optical property calculations show that the orthorhombicCs_(2)B 0BiI_(6) DPs have suitable band gap values,weaker exciton binding energies,and excellent optical absorption performance in the visible-light range.Based on the above comprehensive assessments,we can conclude that the orthorhombic Cs_(2)NaBiI_(6) and Cs_(2)KBiI_(6) DPs with good stability are promising candidates for solar cell applications. 展开更多
关键词 lead-free halide double perovskite solar cells STABILITY optoelectronic property
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部