期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Functionalized Hydrogels for Articular Cartilage Tissue Engineering 被引量:4
1
作者 liangbin zhou Peng Guo +8 位作者 Matteo D’Este Wenxue Tong Jiankun Xu Hao Yao Martin J.Stoddart Gerjo J.V.M.van Osch Kevin Ki-Wai Ho Zhen Li Ling Qin 《Engineering》 SCIE EI CAS 2022年第6期71-90,共20页
Articular cartilage(AC)is an avascular and flexible connective tissue located on the bone surface in the diarthrodial joints.AC defects are common in the knees of young and physically active individuals.Because of the... Articular cartilage(AC)is an avascular and flexible connective tissue located on the bone surface in the diarthrodial joints.AC defects are common in the knees of young and physically active individuals.Because of the lack of suitable tissue-engineered artificial matrices,current therapies for AC defects,espe-cially full-thickness AC defects and osteochondral interfaces,fail to replace or regenerate damaged carti-lage adequately.With rapid research and development advancements in AC tissue engineering(ACTE),functionalized hydrogels have emerged as promising cartilage matrix substitutes because of their favor-able biomechanical properties,water content,swelling ability,cytocompatibility,biodegradability,and lubricating behaviors.They can be rationally designed and conveniently tuned to simulate the extracel-lular matrix of cartilage.This article briefly introduces the composition,structure,and function of AC and its defects,followed by a comprehensive review of the exquisite(bio)design and(bio)fabrication of func-tionalized hydrogels for AC repair.Finally,we summarize the challenges encountered in functionalized hydrogel-based strategies for ACTE both in vivo and in vitro and the future directions for clinical translation. 展开更多
关键词 Articular cartilage Functionalized hydrogels Cartilage repair Cartilage tissue engineering Clinical translation
下载PDF
Engineered biochemical cues of regenerative biomaterials to enhance endogenous stem/progenitor cells(ESPCs)-mediated articular cartilage repair 被引量:1
2
作者 liangbin zhou Jietao Xu +12 位作者 Andrea Schwa Wenxue Tong Jiankun Xu Lizhen Zheng Ye Li Zhuo Li Shunxiang Xu Ziyi Chen Li Zou Xin Zhao Gerjo J.V.Mvan Osch Chunyi Wen Ling Qin 《Bioactive Materials》 SCIE CSCD 2023年第8期490-512,共23页
As a highly specialized shock-absorbing connective tissue,articular cartilage(AC)has very limited self-repair capacity after traumatic injuries,posing a heavy socioeconomic burden.Common clinical therapies for small-t... As a highly specialized shock-absorbing connective tissue,articular cartilage(AC)has very limited self-repair capacity after traumatic injuries,posing a heavy socioeconomic burden.Common clinical therapies for small-to medium-size focal AC defects are well-developed endogenous repair and cell-based strategies,including microfracture,mosaicplasty,autologous chondrocyte implantation(ACI),and matrix-induced ACI(MACI).However,these treatments frequently result in mechanically inferior fibrocartilage,low cost-effectiveness,donor site morbidity,and short-term durability.It prompts an urgent need for innovative approaches to pattern a pro-regenerative microenvironment and yield hyaline-like cartilage with similar biomechanical and biochemical properties as healthy native AC.Acellular regenerative biomaterials can create a favorable local environment for AC repair without causing relevant regulatory and scientific concerns from cell-based treatments.A deeper understanding of the mechanism of endogenous cartilage healing is furthering the(bio)design and application of these scaffolds.Currently,the utilization of regenerative biomaterials to magnify the repairing effect of joint-resident endogenous stem/progenitor cells(ESPCs)presents an evolving improvement for cartilage repair.This review starts by briefly summarizing the current understanding of endogenous AC repair and the vital roles of ESPCs and chemoattractants for cartilage regeneration.Then several intrinsic hurdles for regenerative biomaterials-based AC repair are discussed.The recent advances in novel(bio)design and application regarding regenerative biomaterials with favorable biochemical cues to provide an instructive extracellular microenvironment and to guide the ESPCs(e.g.adhesion,migration,proliferation,differentiation,matrix production,and remodeling)for cartilage repair are summarized.Finally,this review outlines the future directions of engineering the next-generation regenerative biomaterials toward ultimate clinical translation. 展开更多
关键词 Regenerative biomaterials Endogenous stem/progenitor cells(ESPCs) Articular cartilage(AC)repair Biochemical cues
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部