High entropy oxides(HEO)are single-phase solid solutions which are formed by the incorporation of five or more elements into a cationic sublattice in equal or near-equal atomic proportions.Its unique structural featur...High entropy oxides(HEO)are single-phase solid solutions which are formed by the incorporation of five or more elements into a cationic sublattice in equal or near-equal atomic proportions.Its unique structural features and the possibility of targeted access to certain functions have attracted great interest from researchers.In this review,we summarize the recent advances in the electronic field of high-entropy oxides.We emphasize the following three fundamental aspects of high-entropy oxides:(1)The conductivity mechanism of metal oxides;(2)the factors affecting the formation of single-phase oxides;and(3)the electrical properties and applications of high-entropy oxides.The purpose of this review is to provide new directions for designing and tailoring the functional properties of relevant electronic materials via a comprehensive overview of the literature on the field of high-entropy oxide electrical properties.展开更多
基金financially supported by the National Natural Science Foundation of China under No.61971094Natural Science Foundation of Sichuan Province under Nos.2022NSFSC0485 and 2022NSFSC0870.
文摘High entropy oxides(HEO)are single-phase solid solutions which are formed by the incorporation of five or more elements into a cationic sublattice in equal or near-equal atomic proportions.Its unique structural features and the possibility of targeted access to certain functions have attracted great interest from researchers.In this review,we summarize the recent advances in the electronic field of high-entropy oxides.We emphasize the following three fundamental aspects of high-entropy oxides:(1)The conductivity mechanism of metal oxides;(2)the factors affecting the formation of single-phase oxides;and(3)the electrical properties and applications of high-entropy oxides.The purpose of this review is to provide new directions for designing and tailoring the functional properties of relevant electronic materials via a comprehensive overview of the literature on the field of high-entropy oxide electrical properties.