Results of an investigation on the application of STATCOM for damping subsynchronous resonance (SSR) in a multi-machine system is presented in this paper. For a multi-machine system which has a set of identical parall...Results of an investigation on the application of STATCOM for damping subsynchronous resonance (SSR) in a multi-machine system is presented in this paper. For a multi-machine system which has a set of identical parallel turbine-generators or non-identical turbine-generators having torsional modes of the same frequency, generators may suffer from the same mode of torsional interaction corresponding to a certain series compensation degrees. Generators in such system may have different oscillation behaviors when they are unequally loaded or have different shaft and electrical parameters. Serving as the grid-side equipment, the reactive power output of a STATCOM could have an impact on all generators electrical distance nearby. Thus a single STATCOM could be used to damp torsional interactions of multi-generators when additional proper control strategy is supplemented. In this paper, control strategy of using STATCOM to damp SSR in a multi-machine system is designed and its effectiveness is validated based on a modified IEEE second benchmark model.展开更多
文摘Results of an investigation on the application of STATCOM for damping subsynchronous resonance (SSR) in a multi-machine system is presented in this paper. For a multi-machine system which has a set of identical parallel turbine-generators or non-identical turbine-generators having torsional modes of the same frequency, generators may suffer from the same mode of torsional interaction corresponding to a certain series compensation degrees. Generators in such system may have different oscillation behaviors when they are unequally loaded or have different shaft and electrical parameters. Serving as the grid-side equipment, the reactive power output of a STATCOM could have an impact on all generators electrical distance nearby. Thus a single STATCOM could be used to damp torsional interactions of multi-generators when additional proper control strategy is supplemented. In this paper, control strategy of using STATCOM to damp SSR in a multi-machine system is designed and its effectiveness is validated based on a modified IEEE second benchmark model.