期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Investigation of rotor–stator interaction broadband noise using a RANS-informed analytical method 被引量:2
1
作者 Hang TONG Lin LI +2 位作者 liangfeng wang Luqin MAO Weiyang QIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第10期53-66,共14页
A Reynolds-Averaged Navier Stokes(RANS)-information analytical method for predicting Rotor-Stator Interaction(RSI)broadband noise is established in this paper.First,the turbulence information is deduced from RANS simu... A Reynolds-Averaged Navier Stokes(RANS)-information analytical method for predicting Rotor-Stator Interaction(RSI)broadband noise is established in this paper.First,the turbulence information is deduced from RANS simulation result.Then,the unsteady load on the stator blade is calculated using a strip theory approach based on LINearized SUBsonic unsteady flow in cascade(LINSUB)and 2-D equivalence method.In the end,the sound power of RSI broadband noise is calculated by coupling the unsteady load on the stator blade with acoustic analogy and annular duct mode.The broadband noise model part of the RANS-information analytical method is validated against the upstream sound power of an annular cascade experimental bench.Besides,the RANS-information analytical method is used in predicting RSI broadband noise of a single-stage axial fan acoustic experimental bench,the results illustrate that the RANS-information analytical method can accurately predict the RSI broadband noise in different fan working conditions.After simplification the Wave Leading Edge(WLE)stator blade,the effect of WLE stator blade on RSI broadband noise is studies.Although the simplification may bring some discrepancies,the results illustrate that the RANS-information analytical method has the capability for further studies on the broadband noise reduction with WLE stator blade. 展开更多
关键词 Acoustic analogy Analytical methods Rotor-stator interaction broadband noise Strip theory Wavy leading edge
原文传递
Utilization of Whale-inspired Leading-edge Tubercles for Airfoil Noise Reduction
2
作者 Weijie Chen Liangji Zhang +2 位作者 liangfeng wang Zuojun Wei Weiyang Qiao 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第5期1405-1421,共17页
Numerical studies are conducted to explore the noise reduction effect of leading-edge tubercles inspired by humpback whale flippers.Large eddy simulations are performed to solve the flow field,while the acoustic analo... Numerical studies are conducted to explore the noise reduction effect of leading-edge tubercles inspired by humpback whale flippers.Large eddy simulations are performed to solve the flow field,while the acoustic analogy theory is used for noise prediction.In this paper,a baseline airfoil with a straight leading-edge and three bionic airfoils with tubercled leading-edges are simulated.The tubercles have sinusoidal profiles and the profiles are determined by the tubercle wavelength and amplitude.The tubercles used in this study have a fixed wavelength of 0.1c with three different amplitudes of 0.1c,0.15c and 0.2c,where c is the mean chord of the airfoil.The freestream velocity is set to 40 m/s and the chord based Reynolds number is 400,000.The predicted flow field and acoustic field of the baseline airfoil are compared against the experiments and good agreements are found.A considerable noise reduction level is achieved by the leading-edge tubercles and the tubercle with larger amplitude can obtain better noise reduction.The underlying flow mechanisms responsible for the noise reduction are analyzed in detail. 展开更多
关键词 Bionic design Humpback whale Leading-edge tubercle Large eddy simulation Noise reduction mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部