A Reynolds-Averaged Navier Stokes(RANS)-information analytical method for predicting Rotor-Stator Interaction(RSI)broadband noise is established in this paper.First,the turbulence information is deduced from RANS simu...A Reynolds-Averaged Navier Stokes(RANS)-information analytical method for predicting Rotor-Stator Interaction(RSI)broadband noise is established in this paper.First,the turbulence information is deduced from RANS simulation result.Then,the unsteady load on the stator blade is calculated using a strip theory approach based on LINearized SUBsonic unsteady flow in cascade(LINSUB)and 2-D equivalence method.In the end,the sound power of RSI broadband noise is calculated by coupling the unsteady load on the stator blade with acoustic analogy and annular duct mode.The broadband noise model part of the RANS-information analytical method is validated against the upstream sound power of an annular cascade experimental bench.Besides,the RANS-information analytical method is used in predicting RSI broadband noise of a single-stage axial fan acoustic experimental bench,the results illustrate that the RANS-information analytical method can accurately predict the RSI broadband noise in different fan working conditions.After simplification the Wave Leading Edge(WLE)stator blade,the effect of WLE stator blade on RSI broadband noise is studies.Although the simplification may bring some discrepancies,the results illustrate that the RANS-information analytical method has the capability for further studies on the broadband noise reduction with WLE stator blade.展开更多
Numerical studies are conducted to explore the noise reduction effect of leading-edge tubercles inspired by humpback whale flippers.Large eddy simulations are performed to solve the flow field,while the acoustic analo...Numerical studies are conducted to explore the noise reduction effect of leading-edge tubercles inspired by humpback whale flippers.Large eddy simulations are performed to solve the flow field,while the acoustic analogy theory is used for noise prediction.In this paper,a baseline airfoil with a straight leading-edge and three bionic airfoils with tubercled leading-edges are simulated.The tubercles have sinusoidal profiles and the profiles are determined by the tubercle wavelength and amplitude.The tubercles used in this study have a fixed wavelength of 0.1c with three different amplitudes of 0.1c,0.15c and 0.2c,where c is the mean chord of the airfoil.The freestream velocity is set to 40 m/s and the chord based Reynolds number is 400,000.The predicted flow field and acoustic field of the baseline airfoil are compared against the experiments and good agreements are found.A considerable noise reduction level is achieved by the leading-edge tubercles and the tubercle with larger amplitude can obtain better noise reduction.The underlying flow mechanisms responsible for the noise reduction are analyzed in detail.展开更多
基金co-supported by the National Science and Technology Major Project,China(No.2017-Ⅱ-0008-0022)the National Natural Science Foundation of China(Nos.51936010 and 51776174)。
文摘A Reynolds-Averaged Navier Stokes(RANS)-information analytical method for predicting Rotor-Stator Interaction(RSI)broadband noise is established in this paper.First,the turbulence information is deduced from RANS simulation result.Then,the unsteady load on the stator blade is calculated using a strip theory approach based on LINearized SUBsonic unsteady flow in cascade(LINSUB)and 2-D equivalence method.In the end,the sound power of RSI broadband noise is calculated by coupling the unsteady load on the stator blade with acoustic analogy and annular duct mode.The broadband noise model part of the RANS-information analytical method is validated against the upstream sound power of an annular cascade experimental bench.Besides,the RANS-information analytical method is used in predicting RSI broadband noise of a single-stage axial fan acoustic experimental bench,the results illustrate that the RANS-information analytical method can accurately predict the RSI broadband noise in different fan working conditions.After simplification the Wave Leading Edge(WLE)stator blade,the effect of WLE stator blade on RSI broadband noise is studies.Although the simplification may bring some discrepancies,the results illustrate that the RANS-information analytical method has the capability for further studies on the broadband noise reduction with WLE stator blade.
基金This work is supported by the National Natural Science Foundation of China(No.52106056,51776174 and 51936010)the National Science and Technology Major Project of China(No.2017-II-0008-0022)+2 种基金the Fundamental Research Funds for the Central Universities(No.31020210QD706)the National Key Laboratory of Science and Technology on Aerodynamic Design and Research(No.614220121050103)the Key Laboratory of Aerodynamic Noise Control(No.ANCL20210104).
文摘Numerical studies are conducted to explore the noise reduction effect of leading-edge tubercles inspired by humpback whale flippers.Large eddy simulations are performed to solve the flow field,while the acoustic analogy theory is used for noise prediction.In this paper,a baseline airfoil with a straight leading-edge and three bionic airfoils with tubercled leading-edges are simulated.The tubercles have sinusoidal profiles and the profiles are determined by the tubercle wavelength and amplitude.The tubercles used in this study have a fixed wavelength of 0.1c with three different amplitudes of 0.1c,0.15c and 0.2c,where c is the mean chord of the airfoil.The freestream velocity is set to 40 m/s and the chord based Reynolds number is 400,000.The predicted flow field and acoustic field of the baseline airfoil are compared against the experiments and good agreements are found.A considerable noise reduction level is achieved by the leading-edge tubercles and the tubercle with larger amplitude can obtain better noise reduction.The underlying flow mechanisms responsible for the noise reduction are analyzed in detail.