期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Improved Granulated Convolutional Neural Network Data Analysis Model for COVID-19 Prediction
1
作者 Meilin Wu lianggui tang +1 位作者 Qingda Zhang Ke Yan 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期179-198,共20页
As COVID-19 poses a major threat to people’s health and economy,there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently.In non-stationary time series forecasting jobs,ther... As COVID-19 poses a major threat to people’s health and economy,there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently.In non-stationary time series forecasting jobs,there is frequently a hysteresis in the anticipated values relative to the real values.The multilayer deep-time convolutional network and a feature fusion network are combined in this paper’s proposal of an enhanced Multilayer Deep Time Convolutional Neural Network(MDTCNet)for COVID-19 prediction to address this problem.In particular,it is possible to record the deep features and temporal dependencies in uncertain time series,and the features may then be combined using a feature fusion network and a multilayer perceptron.Last but not least,the experimental verification is conducted on the prediction task of COVID-19 real daily confirmed cases in the world and the United States with uncertainty,realizing the short-term and long-term prediction of COVID-19 daily confirmed cases,and verifying the effectiveness and accuracy of the suggested prediction method,as well as reducing the hysteresis of the prediction results. 展开更多
关键词 Time series forecasting granulated convolutional networks data analysis techniques non-stationarity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部