期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves 被引量:40
1
作者 Shuo Liu Tie Jun Cui +12 位作者 Quan Xu Di Bao liangliang du Xiang Wan Wen Xuan Tang Chunmei Ouyang Xiao Yang Zhou Hao Yuan Hui Feng Ma Wei Xiang Jiang Jiaguang Han Weili Zhang Qiang Cheng 《Light(Science & Applications)》 SCIE EI CAS CSCD 2016年第1期767-777,共11页
Metamaterials based on effective media can be used to produce a number of unusual physical properties(for example,negative refraction and invisibility cloaking)because they can be tailored with effective medium parame... Metamaterials based on effective media can be used to produce a number of unusual physical properties(for example,negative refraction and invisibility cloaking)because they can be tailored with effective medium parameters that do not occur in nature.Recently,the use of coding metamaterials has been suggested for the control of electromagnetic waves through the design of coding sequences using digital elements‘0’and‘1,'which possess opposite phase responses.Here we propose the concept of an anisotropic coding metamaterial in which the coding behaviors in different directions are dependent on the polarization status of the electromagnetic waves.We experimentally demonstrate an ultrathin and flexible polarization-controlled anisotropic coding metasurface that functions in the terahertz regime using specially designed coding elements.By encoding the elements with elaborately designed coding sequences(both 1-bit and 2-bit sequences),the x-and y-polarized waves can be anomalously reflected or independently diffused in three dimensions.The simulated far-field scattering patterns and near-field distributions are presented to illustrate the dual-functional performance of the encoded metasurface,and the results are consistent with the measured results.We further demonstrate the ability of the anisotropic coding metasurfaces to generate a beam splitter and realize simultaneous anomalous reflections and polarization conversions,thus providing powerful control of differently polarized electromagnetic waves.The proposed method enables versatile beam behaviors under orthogonal polarizations using a single metasurface and has the potential for use in the development of interesting terahertz devices. 展开更多
关键词 anisotropic metamaterial design coding metamaterial metasurface terahertz waves
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部