Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from...Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from the low intrinsic electronic conductivity,sluggish ions diffusion kinetics,and structural collapse,hindering their large-scale application.Herein,we successfully developed a latent amorphous Mn_(1.8)Fe_(1.2)O_(4) hollow nanocube(a-H-MnFeO) cathode material derived from Prussian blue analogue precursor.The amorphous nature endows the cathode with lower diffusion barrier and narrower band gap compared with crystalline counterpart,resulting in the superior Zn^(2+) ions and electrons transport kinetics.Hollow structure can furnish abundant surface sites and suppress the structural collapse during the repeated charge/discharge processes.By virtue of the multiple advantageous features,the a-H-MnFeO cathode exhibits exceptional electrochemical performance,in terms of high capacity,excellent rate capability,and prolonged cycle life.This strategy will pave the way for the structural design of emerging cathode materials.展开更多
From the perspective of electronic structure modulation,it is highly desirable to rationally design the active urea oxidation reaction(UOR)catalysts through interface engineering.The binary cooperative heterostructure...From the perspective of electronic structure modulation,it is highly desirable to rationally design the active urea oxidation reaction(UOR)catalysts through interface engineering.The binary cooperative heterostructure systems have been shown significant enhancement for catalyzing UOR,but their performance still remains unsatisfactory for industrialization because of the unfavorable intermediate adsorption/desorption and deficient electron transfer channels.In response,taking the ternary cooperative Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4) heterostructure as the proof-of-concept paradigm,a catalytic model is rationally put forward to elucidate the UOR promotion mechanism at the molecular level.The rod-like Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4) nanoarrays with three-phase heterojunction are experimentally fabricated on Ni foam(named as Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4)/NF)via simple two-step processes.The density functional theory calculations disclose that construction of Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4) heterostructure model not only induce charge redistribution at the interfacial region for creating innumerable electron transfer channels,but also endow it with a moderate d-band center that could help to build a balance between adsorption and desorption of diverse UOR intermediates.Benefiting from the unique rod-like nanoarrays with large specific surface area and the optimized electronic structure,the well-designed Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4)/NF could act as a robust catalyst for driving UOR at industrial-level current densities under tough environments,offering great potential for commercial applications.展开更多
Osteoporosis(OP),a systemic and chronic bone disease,is distinguished by low bone mass and destruction of bone microarchitecture.Ginsenoside Compound-K(CK),one of the metabolites of ginsenoside Rb1,has anti-aging,anti...Osteoporosis(OP),a systemic and chronic bone disease,is distinguished by low bone mass and destruction of bone microarchitecture.Ginsenoside Compound-K(CK),one of the metabolites of ginsenoside Rb1,has anti-aging,anti-inflammatory,anti-cancer,and hypolipidemic activities.We have demonstrated CK could promote osteogenesis and fracture healing in our previous study.However,the contribution of CK to osteoporosis has not been examined.In the present study,we investigated the effect of CK on osteoclastogenesis and ovariectomy(OVX)-induced osteoporosis.The results showed that CK inhibited receptor activator for nuclear factor-κB ligand(RANKL)-mediated osteoclast differentiation and reactive oxygen species(ROS)activity by inhibiting the phosphorylation of NF-κB p65 and oxidative stress in RAW264.7 cells.In addition,we also demonstrated that CK could inhibit bone resorption using bone marrow-derived macrophages.Furthermore,we demonstrated that CK attenuated bone loss by suppressing the activity of osteoclast and alleviating oxidative stress in vivo.Taken together,these results showed CK could inhibit osteoclastogenesis and prevent OVX-induced bone loss by inhibiting NF-κB signaling pathway.展开更多
In the literature, the Bailey transform has many applications in basic hypergeometric series. In this paper, we derive many new transformation formulas for q-series by means of the Bailey transform. Meanwhile, We also...In the literature, the Bailey transform has many applications in basic hypergeometric series. In this paper, we derive many new transformation formulas for q-series by means of the Bailey transform. Meanwhile, We also obtain some new terminated identities. Furthermore, we establish a companion identity to the Rogers-Ramanujan identity labelled by number (23) on Slater’s list.展开更多
Egg custard is a common dish on the dining table and exhibits a uniform porous structure after freezedrying.The protein within egg custard is a rich source of carbon and nitrogen,and the custard’s unique microstructu...Egg custard is a common dish on the dining table and exhibits a uniform porous structure after freezedrying.The protein within egg custard is a rich source of carbon and nitrogen,and the custard’s unique microstructure and adjustable electrical properties make it a potential porous carbon precursor.Herein,nitrogen in situ doped porous carbons(NPCs)and potassium-carbonate-modified NPCs(PNPCs)are obtained through a simple gelation and carbonization process using egg white as the raw material.The unique morphologies of the porous carbon are inherited from the protein and include fibrous clusters,honeycomb holes,and a grooved skeleton.Their excellent impedance matching and effective internal loss make the obtained porous carbons good candidates for lightweight electromagnetic(EM)wave absorbers without the need to dope with metal elements.As a representative porous carbon,PNPC10-700 has multiple structures,including fibrous clusters,honeycomb holes,and a porous skeleton.Moreover,it achieves a maximum reflection loss value of-66.15 dB(with a thickness of 3.77 mm)and a broad effective absorption bandwidth of 5.82 GHz(from 12.18 to 18.00 GHz,with a thickness of 2.5mm),which surpasses the reported values in most of the literatu re.Thus,gelation combined with the further carbonization of egg white(protein)is a new method for designing the morphology and EM properties of porous carbon absorbers.展开更多
In this work,a one-pot strategy is presented to directly synthesize amorphous Fe_(x)Ni_(y) hydroxide nanoclusters(denoted as ANC-Fe_(x)Ni_(y),<2 nm)with oxygen vacancies induced by ionic liquids.The ANC-Fe_(x)Ni_(y...In this work,a one-pot strategy is presented to directly synthesize amorphous Fe_(x)Ni_(y) hydroxide nanoclusters(denoted as ANC-Fe_(x)Ni_(y),<2 nm)with oxygen vacancies induced by ionic liquids.The ANC-Fe_(x)Ni_(y) catalyst presents abundant catalytic sites and high intrinsic conductivity.As such,the optimized ANC-Fe_(1)Ni_(2) exhibits high activity in oxygen evolution reaction(OER)with a Tafel slope of 39 m V dec^(–1) and an overpotential of 266 m V at 10 m A cm^(-2).Notably,the optimized ANC-Fe_(1)Ni_(2) shows an extraordinarily large mass activity of 3028 Ag_(FeNi)^(–1) at the overpotential of 300 m V,which is~24-fold of commercial RuO_(2) catalyst.The superior activity of these Fe_(x)Ni_(y) hydroxide nanoclusters is ascribed to(i)the amorphous and distorted structure with abundant oxygen vacancies,and(ii)enhanced active site density by downsizing the ANC-FexNiyclusters.This strategy provides a novel route for enhancing OER electrocatalytic performance and highly encouraging for the future application of amorphous metal hydroxides in catalysis.展开更多
Heterojunction composites with intimate interfaces can shorten the diffusion distance,which leads to a shorter path for photogenerated carriers,thereby increasing photocatalytic activity.Herein,we report the fabricati...Heterojunction composites with intimate interfaces can shorten the diffusion distance,which leads to a shorter path for photogenerated carriers,thereby increasing photocatalytic activity.Herein,we report the fabrication of Ti_(3)C_(2)-Bi_(2)WO_(6)(TC-BW)heterojunctions hinged by Bi_(2)Ti_(2)O_(7)joints via an in situ hydrothermal reaction of Ti_(3)C_(2)in the presence of Na_(2)WO_(4)and Bi(NO_(3))_(3).The TC-BW was characterized using X-ray diffraction(XRD),scanning transmission electron microscopy(STEM),and Raman spectroscopy.TC-BW showed superior photocatalytic activity(productivity over 15TC-WB reaches up to 5.0 mmolreacted BA·gcat.^(−1)·h^(−1))in the oxidation of benzyl alcohol using light-emitting diode(LED)light,arising from the surface defects and intimate heterojunction interface between the Ti_(3)C_(2)MXene and Bi_(2)WO_(6)nanosheets.TC-BW heterojunctions provide an enhanced separation efficiency of photogenerated charges,which in turn yields superior photocatalytic activity.Furthermore,it is well substantiated by density functional theory(DFT)calculations.In summary,this study elucidates the preparation of heterojunction composites with intimate interfaces for highly efficient photooxidation.展开更多
Employing the alkaline water electrolysis system to generate hydrogen holds great prospects but still poses significant challenges,particularly for the construction of hydrogen evolution reaction(HER)catalysts operati...Employing the alkaline water electrolysis system to generate hydrogen holds great prospects but still poses significant challenges,particularly for the construction of hydrogen evolution reaction(HER)catalysts operating at ampere-level current density.Herein,the unique Ru and RuP_(2)dual nano-islands are deliberately implanted on N-doped carbon substrate(denoted as Ru-RuP_(2)/NC),in which a built-in electric field(BEF)is spontaneously generated between Ru-RuP_(2)dual nano-islands driven by their work function difference.Experimental and theoretical results unveil that such constructed BEF could serve as the driving force for triggering fast hydrogen spillover process on bridged Ru-RuP_(2)dual nano-islands,which could invalidate the inhibitory effect of high hydrogen coverage at ampere-level current density,and synchronously speed up the water dissociation on Ru nano-islands and hydrogen adsorption/desorption on RuP_(2)nano-islands through hydrogen spillover process.As a result,the Ru-RuP_(2)/NC affords an ultra-low overpotential of 218 mV to achieve 1.0 A·cm^(−2)along with the superior stability over 1000 h,holding the great promising prospect in practical applications at ampere-level current density.More importantly,this work is the first to advance the scientific understanding of the relationship between the constructed BEF and hydrogen spillover process,which could be enlightening for the rational design of the cost-effective alkaline HER catalysts at ampere-level current density.展开更多
Fractures have an extraordinarily negative impact on individuals'quality of life and functional status.Nonunion or disability of fracture is a major health issue with important clinical,social,and economic implica...Fractures have an extraordinarily negative impact on individuals'quality of life and functional status.Nonunion or disability of fracture is a major health issue with important clinical,social,and economic implications.1 Mesenchymal stem cells(MSCs)play an indispensable role in the initiation of the fracture repair process including the formation of a callus which is replaced by new bone.The use of MSCs in the treatment of fractures is very attractive as they can reduce the time of healing and occurrence of nonunion.展开更多
Two‑dimensional MXenes with an enormous active surface area are considered to be significant cathode materials for Zn‑ion hybrid supercapacitors. However, the nanosheets are easily self-restacked during the assembly i...Two‑dimensional MXenes with an enormous active surface area are considered to be significant cathode materials for Zn‑ion hybrid supercapacitors. However, the nanosheets are easily self-restacked during the assembly into macroscopic porous electrodes, resulting in a significantly reduced effective surface area, hindering their applications in energy storage. Here, MXenes are subtly distributed on the surface of the sponge in a coral-like structure rather than participating in the assembly of the framework, which has suppressed the self-restacking of MXene effectively, improved the hydrophilicity of the sponge, and provided fast diffusion channels for electrolyte ions. Therefore, the MXene-TiC-reduced graphene oxide sponge exhibits excellent electrical conductivity, an enormous specific surface area with abundant accessible electroactive sites, and superior electrochemical performance. The resulting sponge demonstrates an outstanding specific capacity, up to 501 mAh g–1 at 0.2 A g–1 , with excellent capacity retention (90%) after 3100 cycles as Zinc-ion hybrid supercapacitor cathodes. Furthermore, it exhibits an elegant gravimetric energy density of 486 mWh g–1 at 415 mW g–1 , which has surpassed most leading MXene-based Zn-ion cathodes. This work provides a new synthetic idea for MXene-based macro-composites and paves a new avenue for designing next-generation flexible and portable porous electrodes with high gravimetric and rate performances.展开更多
Catalysts for chemoselective hydrogenation are of vital importance for the synthesis of various important chemicals and intermediates.Herein we developed a simple method for preparing a highly efficient Ni-MoC_(x)nano...Catalysts for chemoselective hydrogenation are of vital importance for the synthesis of various important chemicals and intermediates.Herein we developed a simple method for preparing a highly efficient Ni-MoC_(x)nanocomposite catalyst via temperature-programmed carburization of a polyoxometalate precursor.X-ray diffraction(XRD),scanning transmission electron microscopy(STEM),X-ray photoelectron spectroscopy(XPS),and X-ray absorption spectroscopy(XAS)analyses indicate that the resulting mesoporous nanocomposite catalyst is made up of well-dispersed metallic nickel particles embedded in a MoC_(x)matrix.This catalyst exhibits high activity and selectivity(>99%)in the hydrogenation of various substituted nitroaromatics to corresponding anilines.The high efficiency is attributed to the intimate contact of the constituents favoring electron transfer and hydrogen adsorption.Dihydrogen is physisorbed on the carbide support and dissociates on the nickel particles,as evidenced by Mo K-edge X-ray absorption near-edge structure(XANES)spectra,density functional theory(DFT),and hydrogen-deuterium exchange.The remarkable catalytic performance of the catalyst could be traced back to the synergistic interaction between the Ni particles and the carbide support.In-situ infrared spectroscopy and DFT simulations indicated that the adsorption/activation of the nitro group is favored compared to that of other substituents at the aromatic ring.In recyclability tests,the Ni-MoC_(x)nanocomposite showed no significant loss of catalytic performance in seven consecutive runs,indicating its robust nature.展开更多
Evolution of precipitate and precipitate/matrix interface in artificially aged Al-Zn-Mg-Cu(-Ag)alloys has been systematically studied.In the early stage of ageing,Ag,as a fast diffuser,can promote the formation of sol...Evolution of precipitate and precipitate/matrix interface in artificially aged Al-Zn-Mg-Cu(-Ag)alloys has been systematically studied.In the early stage of ageing,Ag,as a fast diffuser,can promote the formation of solute pairs and small clusters.Solute clusters are further demonstrated to be able to act as precursors forη’precipitates by in-situ STEM heating.With prolonged ageing time,the precipitate/matrix interface evolves from the Zn-dominated interface between early-stageη’and Al matrix to the Zn and Mg co-segregatedη’/Al andη_(2)/Al interfaces.Theη’/Al interfacial layers are shown to precede the formation ofη’,while theη_(2)/Al interfaces are found to be closely related to the thickening process ofη_(2)and the involved particular atomic movements are specified.Experimental observations and DFT calculations re-veal that forη’andη_(2),Ag can dissolve into the precipitate as well as locate at the precipitate/matrix interface without showing preference.For Cu,its dissolution in the precipitate and segregation on the interface mainly occur forη_(2)rather thanη’.The incorporation of Ag and Cu does not change the defined precipitate structure.展开更多
Morphological effects of nanoparticles are crucial in many solid-catalyzed chemical transformations.We herein prepared two manganese-ceria solid solutions,well-defined MnCeO_(x)nanorods and MnCeO_(x)-nanocubes,exposin...Morphological effects of nanoparticles are crucial in many solid-catalyzed chemical transformations.We herein prepared two manganese-ceria solid solutions,well-defined MnCeO_(x)nanorods and MnCeO_(x)-nanocubes,exposing preferentially(111)and(100)facets of ceria,respectively.The incorporation of Mn dopant into ceria lattice strongly enhanced the catalytic performance in the NO reduction with CO.MnCeO_(x)(111)catalyst outperformed MnCeO_(x)(100)counterpart due to its higher population density of oxygen vacancy defects.In-situ infrared spectroscopy investigations indicated that the reaction pathway over MnCeO_(x)and pristine CeO_(2)is similar and that besides the direct pathway,an indirect pathway via adsorbed hyponitrite as an intermediate cannot be ruled out.X-ray photoelectron and Raman spectroscopies as well as first-principles density functional theory(DFT)calculations indicate that the enhanced catalytic performance of MnCeO_(x)can be traced back to its“Mn–OL(VÖ)–Mn–OL(VÖ)–Ce”connectivities.The Mn dopant strongly facilitates the formation of surface oxygen vacancies(VÖ)by liberating surface lattice oxygen(OL)via CO*+OL→CO_(2)*+VÖand promotes the reduction of NO,according to NO*+VÖ→N*+OL and 2N*→N_(2).The Mn dopant impact on both the adsorption of CO and activation of OL reveals that a balance between these two effects is critical for facilitating all reaction steps.展开更多
Element Sc is a promising candidate for optimizing the high-temperature mechanical properties of Al alloys.In this study,the Sc-solute,Al_(3) Sc-vacancy and Al_(3) Sc-solute interactions in aluminium are inves-tigated...Element Sc is a promising candidate for optimizing the high-temperature mechanical properties of Al alloys.In this study,the Sc-solute,Al_(3) Sc-vacancy and Al_(3) Sc-solute interactions in aluminium are inves-tigated extensively by using first-principles calculations.The correlation between the various interaction energies and the solute atomic size,and the Sc-solute compound formation energy has been evaluated.A negative correlation between the first nearest neighbour Sc-solute binding energies and the lowest Sc-solute compound formation energies has been identified,while the second nearest neighbour Sc-solute binding energies increase monotonically with the solute atomic size.Al_(3) Sc precipitates can bind vacancy strongly at the specific atomic site,but their relatively low number density limits their influence on va-cancy behaviours during the ageing period shortly after quenching.Compared to the atomic size,the trend for solute segregating at the interface between Al_(3) Sc precipitate and Al bulk is more strongly re-lated to the Sc-solute binding energy.The calculated results can clarify the available experimental obser-vations for Al-Sc,Al-Cu,Al-Mg-Si and Al-Zn-Mg-Cu alloys,and it is hoped to guide the design of high-performance Al alloys.展开更多
Exploring high-performance soft actuators from biomass resources is significant for developing eco-friendly smart devices.Dried bonito(DB)flake is a common food as well as a biomass material,and it can produce irregul...Exploring high-performance soft actuators from biomass resources is significant for developing eco-friendly smart devices.Dried bonito(DB)flake is a common food as well as a biomass material,and it can produce irregular motion in changed moisture,just like dancing.Inspired by this intriguing phenomenon,a cost-effective,biocom patible,and biodegradable moisture-responsive DB film actuator with a gradient structure is developed.The DB film actuator exhibits rapid and reversible bending deformation triggered by a humidity gradient with a high bending speed(40°s-1)and a maximum bending angle(180°).More-over,the DB film actuator shows large bending deformation(-71°to+51°)with a high actuation force(214.7 Pa)in response to changes in relative humidity.Furthermore,the actuation performance can be also tuned by adjusting the thickness of the film.Potential applications of this actuator,including smart grippers,crawling robots,and biomimetic flowers for visible humidity sensing,are demonstrated.More importantly,smart sweat-responsive wearables that automatically deform to promote sweat evaporation and convection during exercise are constructed based on the actuator,making it promising for adaptive personal thermal management.This work offers an easily processable,cost-effective,and environmentally benign strategy to construct moisture-responsive actuators for future eco-friendly smart devices.展开更多
Fish artificial breeding and release is an important method to restore wild populations of endemic fish species around the world.Schizothorax wangchiachii(SW)is an endemic fish in the upper Yangtze River and is one of...Fish artificial breeding and release is an important method to restore wild populations of endemic fish species around the world.Schizothorax wangchiachii(SW)is an endemic fish in the upper Yangtze River and is one of the most important species for the artificial breeding and release program implemented in the Yalong River drainage system in China.It is unclear how artificially bred SW adapts to the changeable wild environment post-release,after being in a controlled and very different artificial environment.Thus,the gut samples were collected and analyzed for food composition and microbial 16S rRNA in artificially bred SW juveniles at day 0(before release),5,10,15,20,25,and 30 after release to the lower reaches of the Yalong River.The results indicated that SW began to ingest periphytic algae from the natural habitat before day 5,and this feeding habit is gradually stabilized at day 15.Prior to release,Fusobacteria are the dominant bacteria in the gut microbiota of SW,while Proteobacteria and Cyanobacteria generally are the dominant bacteria after release.The results of microbial assembly mechanisms illustrated that deterministic processes played a more prominent role than stochastic processes in the gut microbial community of artificially bred SW juveniles after releasing into the wild.Overall,the present study integrates the macroscopic and microscopic methods to provide an insight into the food and gut microbial reorganization in the released SW.This study will be an important research direction to explore the ecological adaptability of artificially bred fish after releasing into the wild.展开更多
The liver is an extraordinary organ known for its remarkable regenerative capacity(1).This regenerative ability lays the foundation for various therapeutic approaches,such as partial hepatectomy(PHx),split-liver trans...The liver is an extraordinary organ known for its remarkable regenerative capacity(1).This regenerative ability lays the foundation for various therapeutic approaches,such as partial hepatectomy(PHx),split-liver transplantation,live-donor liver transplantation,and associated liver partition and portal vein ligation for staged hepatectomy(ALPPS).展开更多
基金This work was supported by the National Natural Science Foundation of China(No.52206222,No.22227901)State Key Laboratory of Laser Interaction with Matter Foundation(SKLLIM2009).
基金funding supported by the National Natural Science Foundation of China (52101246)the Fundamental Research Funds for the Central Universities+1 种基金the Natural Science Foundation of Heilongjiang Province, China (YQ2022B006)the funding supported by the Natural Science Foundation of Anhui Province (2208085MB21)。
文摘Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from the low intrinsic electronic conductivity,sluggish ions diffusion kinetics,and structural collapse,hindering their large-scale application.Herein,we successfully developed a latent amorphous Mn_(1.8)Fe_(1.2)O_(4) hollow nanocube(a-H-MnFeO) cathode material derived from Prussian blue analogue precursor.The amorphous nature endows the cathode with lower diffusion barrier and narrower band gap compared with crystalline counterpart,resulting in the superior Zn^(2+) ions and electrons transport kinetics.Hollow structure can furnish abundant surface sites and suppress the structural collapse during the repeated charge/discharge processes.By virtue of the multiple advantageous features,the a-H-MnFeO cathode exhibits exceptional electrochemical performance,in terms of high capacity,excellent rate capability,and prolonged cycle life.This strategy will pave the way for the structural design of emerging cathode materials.
基金funding and supporting this work through Research Partnership Program(No.RP-21-09-75)。
文摘From the perspective of electronic structure modulation,it is highly desirable to rationally design the active urea oxidation reaction(UOR)catalysts through interface engineering.The binary cooperative heterostructure systems have been shown significant enhancement for catalyzing UOR,but their performance still remains unsatisfactory for industrialization because of the unfavorable intermediate adsorption/desorption and deficient electron transfer channels.In response,taking the ternary cooperative Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4) heterostructure as the proof-of-concept paradigm,a catalytic model is rationally put forward to elucidate the UOR promotion mechanism at the molecular level.The rod-like Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4) nanoarrays with three-phase heterojunction are experimentally fabricated on Ni foam(named as Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4)/NF)via simple two-step processes.The density functional theory calculations disclose that construction of Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4) heterostructure model not only induce charge redistribution at the interfacial region for creating innumerable electron transfer channels,but also endow it with a moderate d-band center that could help to build a balance between adsorption and desorption of diverse UOR intermediates.Benefiting from the unique rod-like nanoarrays with large specific surface area and the optimized electronic structure,the well-designed Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4)/NF could act as a robust catalyst for driving UOR at industrial-level current densities under tough environments,offering great potential for commercial applications.
基金the grant from National Natural Science Foundation of China(81871778)Guangdong Provincial Science and Technology Collaborative Innovation Center for Sport Science(2019B110210004)the key project of Sport Research Foundation of Guangdong Province(GDSS2022M005).
文摘Osteoporosis(OP),a systemic and chronic bone disease,is distinguished by low bone mass and destruction of bone microarchitecture.Ginsenoside Compound-K(CK),one of the metabolites of ginsenoside Rb1,has anti-aging,anti-inflammatory,anti-cancer,and hypolipidemic activities.We have demonstrated CK could promote osteogenesis and fracture healing in our previous study.However,the contribution of CK to osteoporosis has not been examined.In the present study,we investigated the effect of CK on osteoclastogenesis and ovariectomy(OVX)-induced osteoporosis.The results showed that CK inhibited receptor activator for nuclear factor-κB ligand(RANKL)-mediated osteoclast differentiation and reactive oxygen species(ROS)activity by inhibiting the phosphorylation of NF-κB p65 and oxidative stress in RAW264.7 cells.In addition,we also demonstrated that CK could inhibit bone resorption using bone marrow-derived macrophages.Furthermore,we demonstrated that CK attenuated bone loss by suppressing the activity of osteoclast and alleviating oxidative stress in vivo.Taken together,these results showed CK could inhibit osteoclastogenesis and prevent OVX-induced bone loss by inhibiting NF-κB signaling pathway.
文摘In the literature, the Bailey transform has many applications in basic hypergeometric series. In this paper, we derive many new transformation formulas for q-series by means of the Bailey transform. Meanwhile, We also obtain some new terminated identities. Furthermore, we establish a companion identity to the Rogers-Ramanujan identity labelled by number (23) on Slater’s list.
基金Supported by the Fundamental Research Funds for the Central Universities and Heilongjiang Provincial Natural Science Foundation of China(YQ2020E009)。
文摘Egg custard is a common dish on the dining table and exhibits a uniform porous structure after freezedrying.The protein within egg custard is a rich source of carbon and nitrogen,and the custard’s unique microstructure and adjustable electrical properties make it a potential porous carbon precursor.Herein,nitrogen in situ doped porous carbons(NPCs)and potassium-carbonate-modified NPCs(PNPCs)are obtained through a simple gelation and carbonization process using egg white as the raw material.The unique morphologies of the porous carbon are inherited from the protein and include fibrous clusters,honeycomb holes,and a grooved skeleton.Their excellent impedance matching and effective internal loss make the obtained porous carbons good candidates for lightweight electromagnetic(EM)wave absorbers without the need to dope with metal elements.As a representative porous carbon,PNPC10-700 has multiple structures,including fibrous clusters,honeycomb holes,and a porous skeleton.Moreover,it achieves a maximum reflection loss value of-66.15 dB(with a thickness of 3.77 mm)and a broad effective absorption bandwidth of 5.82 GHz(from 12.18 to 18.00 GHz,with a thickness of 2.5mm),which surpasses the reported values in most of the literatu re.Thus,gelation combined with the further carbonization of egg white(protein)is a new method for designing the morphology and EM properties of porous carbon absorbers.
基金the financial support by the Natural Science Foundation of China(22172167)the Senior Talent Startup Funds of Jiangsu University(4111310024)。
文摘In this work,a one-pot strategy is presented to directly synthesize amorphous Fe_(x)Ni_(y) hydroxide nanoclusters(denoted as ANC-Fe_(x)Ni_(y),<2 nm)with oxygen vacancies induced by ionic liquids.The ANC-Fe_(x)Ni_(y) catalyst presents abundant catalytic sites and high intrinsic conductivity.As such,the optimized ANC-Fe_(1)Ni_(2) exhibits high activity in oxygen evolution reaction(OER)with a Tafel slope of 39 m V dec^(–1) and an overpotential of 266 m V at 10 m A cm^(-2).Notably,the optimized ANC-Fe_(1)Ni_(2) shows an extraordinarily large mass activity of 3028 Ag_(FeNi)^(–1) at the overpotential of 300 m V,which is~24-fold of commercial RuO_(2) catalyst.The superior activity of these Fe_(x)Ni_(y) hydroxide nanoclusters is ascribed to(i)the amorphous and distorted structure with abundant oxygen vacancies,and(ii)enhanced active site density by downsizing the ANC-FexNiyclusters.This strategy provides a novel route for enhancing OER electrocatalytic performance and highly encouraging for the future application of amorphous metal hydroxides in catalysis.
基金the National Natural Science Foundation of China(Nos.22172167 and 22272112).
文摘Heterojunction composites with intimate interfaces can shorten the diffusion distance,which leads to a shorter path for photogenerated carriers,thereby increasing photocatalytic activity.Herein,we report the fabrication of Ti_(3)C_(2)-Bi_(2)WO_(6)(TC-BW)heterojunctions hinged by Bi_(2)Ti_(2)O_(7)joints via an in situ hydrothermal reaction of Ti_(3)C_(2)in the presence of Na_(2)WO_(4)and Bi(NO_(3))_(3).The TC-BW was characterized using X-ray diffraction(XRD),scanning transmission electron microscopy(STEM),and Raman spectroscopy.TC-BW showed superior photocatalytic activity(productivity over 15TC-WB reaches up to 5.0 mmolreacted BA·gcat.^(−1)·h^(−1))in the oxidation of benzyl alcohol using light-emitting diode(LED)light,arising from the surface defects and intimate heterojunction interface between the Ti_(3)C_(2)MXene and Bi_(2)WO_(6)nanosheets.TC-BW heterojunctions provide an enhanced separation efficiency of photogenerated charges,which in turn yields superior photocatalytic activity.Furthermore,it is well substantiated by density functional theory(DFT)calculations.In summary,this study elucidates the preparation of heterojunction composites with intimate interfaces for highly efficient photooxidation.
基金the National Natural Science Foundation of China(Nos.22279124 and 52261145700)Shandong Province Natural Science Foundation(No.ZR2022ZD30)National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.NRF-2020R1A2C3004146 and RS-2023-00235596).
文摘Employing the alkaline water electrolysis system to generate hydrogen holds great prospects but still poses significant challenges,particularly for the construction of hydrogen evolution reaction(HER)catalysts operating at ampere-level current density.Herein,the unique Ru and RuP_(2)dual nano-islands are deliberately implanted on N-doped carbon substrate(denoted as Ru-RuP_(2)/NC),in which a built-in electric field(BEF)is spontaneously generated between Ru-RuP_(2)dual nano-islands driven by their work function difference.Experimental and theoretical results unveil that such constructed BEF could serve as the driving force for triggering fast hydrogen spillover process on bridged Ru-RuP_(2)dual nano-islands,which could invalidate the inhibitory effect of high hydrogen coverage at ampere-level current density,and synchronously speed up the water dissociation on Ru nano-islands and hydrogen adsorption/desorption on RuP_(2)nano-islands through hydrogen spillover process.As a result,the Ru-RuP_(2)/NC affords an ultra-low overpotential of 218 mV to achieve 1.0 A·cm^(−2)along with the superior stability over 1000 h,holding the great promising prospect in practical applications at ampere-level current density.More importantly,this work is the first to advance the scientific understanding of the relationship between the constructed BEF and hydrogen spillover process,which could be enlightening for the rational design of the cost-effective alkaline HER catalysts at ampere-level current density.
基金supported by the National Natural Science Foundation of China(No.81871778,81874000,82272505).
文摘Fractures have an extraordinarily negative impact on individuals'quality of life and functional status.Nonunion or disability of fracture is a major health issue with important clinical,social,and economic implications.1 Mesenchymal stem cells(MSCs)play an indispensable role in the initiation of the fracture repair process including the formation of a callus which is replaced by new bone.The use of MSCs in the treatment of fractures is very attractive as they can reduce the time of healing and occurrence of nonunion.
基金Supported by the Fundamental Research Funds for the Central Universities and Heilongjiang Provincial Natural Science Founda-tion of China(Grant No.YQ2020E009).
文摘Two‑dimensional MXenes with an enormous active surface area are considered to be significant cathode materials for Zn‑ion hybrid supercapacitors. However, the nanosheets are easily self-restacked during the assembly into macroscopic porous electrodes, resulting in a significantly reduced effective surface area, hindering their applications in energy storage. Here, MXenes are subtly distributed on the surface of the sponge in a coral-like structure rather than participating in the assembly of the framework, which has suppressed the self-restacking of MXene effectively, improved the hydrophilicity of the sponge, and provided fast diffusion channels for electrolyte ions. Therefore, the MXene-TiC-reduced graphene oxide sponge exhibits excellent electrical conductivity, an enormous specific surface area with abundant accessible electroactive sites, and superior electrochemical performance. The resulting sponge demonstrates an outstanding specific capacity, up to 501 mAh g–1 at 0.2 A g–1 , with excellent capacity retention (90%) after 3100 cycles as Zinc-ion hybrid supercapacitor cathodes. Furthermore, it exhibits an elegant gravimetric energy density of 486 mWh g–1 at 415 mW g–1 , which has surpassed most leading MXene-based Zn-ion cathodes. This work provides a new synthetic idea for MXene-based macro-composites and paves a new avenue for designing next-generation flexible and portable porous electrodes with high gravimetric and rate performances.
基金We thank the National Natural Science Foundation of China for supporting this work(No.22172167)The 1W1B beamline of Beijing Synchrotron Radiation Facility and BL14W1 beamline of Shanghai Synchrotron Radiation Facility are acknowledged for providing the beam time.
文摘Catalysts for chemoselective hydrogenation are of vital importance for the synthesis of various important chemicals and intermediates.Herein we developed a simple method for preparing a highly efficient Ni-MoC_(x)nanocomposite catalyst via temperature-programmed carburization of a polyoxometalate precursor.X-ray diffraction(XRD),scanning transmission electron microscopy(STEM),X-ray photoelectron spectroscopy(XPS),and X-ray absorption spectroscopy(XAS)analyses indicate that the resulting mesoporous nanocomposite catalyst is made up of well-dispersed metallic nickel particles embedded in a MoC_(x)matrix.This catalyst exhibits high activity and selectivity(>99%)in the hydrogenation of various substituted nitroaromatics to corresponding anilines.The high efficiency is attributed to the intimate contact of the constituents favoring electron transfer and hydrogen adsorption.Dihydrogen is physisorbed on the carbide support and dissociates on the nickel particles,as evidenced by Mo K-edge X-ray absorption near-edge structure(XANES)spectra,density functional theory(DFT),and hydrogen-deuterium exchange.The remarkable catalytic performance of the catalyst could be traced back to the synergistic interaction between the Ni particles and the carbide support.In-situ infrared spectroscopy and DFT simulations indicated that the adsorption/activation of the nitro group is favored compared to that of other substituents at the aromatic ring.In recyclability tests,the Ni-MoC_(x)nanocomposite showed no significant loss of catalytic performance in seven consecutive runs,indicating its robust nature.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52071284 and 51771172)the Zhejiang Provincial Natural Science Foundation of China(No.LQ22E010003).
文摘Evolution of precipitate and precipitate/matrix interface in artificially aged Al-Zn-Mg-Cu(-Ag)alloys has been systematically studied.In the early stage of ageing,Ag,as a fast diffuser,can promote the formation of solute pairs and small clusters.Solute clusters are further demonstrated to be able to act as precursors forη’precipitates by in-situ STEM heating.With prolonged ageing time,the precipitate/matrix interface evolves from the Zn-dominated interface between early-stageη’and Al matrix to the Zn and Mg co-segregatedη’/Al andη_(2)/Al interfaces.Theη’/Al interfacial layers are shown to precede the formation ofη’,while theη_(2)/Al interfaces are found to be closely related to the thickening process ofη_(2)and the involved particular atomic movements are specified.Experimental observations and DFT calculations re-veal that forη’andη_(2),Ag can dissolve into the precipitate as well as locate at the precipitate/matrix interface without showing preference.For Cu,its dissolution in the precipitate and segregation on the interface mainly occur forη_(2)rather thanη’.The incorporation of Ag and Cu does not change the defined precipitate structure.
基金the National Natural Science Foundation of China(Nos.22065029 and 22172167)the Natural Science Foundation of Inner Mongolia Autonomous Region(No.2022MS02002).
文摘Morphological effects of nanoparticles are crucial in many solid-catalyzed chemical transformations.We herein prepared two manganese-ceria solid solutions,well-defined MnCeO_(x)nanorods and MnCeO_(x)-nanocubes,exposing preferentially(111)and(100)facets of ceria,respectively.The incorporation of Mn dopant into ceria lattice strongly enhanced the catalytic performance in the NO reduction with CO.MnCeO_(x)(111)catalyst outperformed MnCeO_(x)(100)counterpart due to its higher population density of oxygen vacancy defects.In-situ infrared spectroscopy investigations indicated that the reaction pathway over MnCeO_(x)and pristine CeO_(2)is similar and that besides the direct pathway,an indirect pathway via adsorbed hyponitrite as an intermediate cannot be ruled out.X-ray photoelectron and Raman spectroscopies as well as first-principles density functional theory(DFT)calculations indicate that the enhanced catalytic performance of MnCeO_(x)can be traced back to its“Mn–OL(VÖ)–Mn–OL(VÖ)–Ce”connectivities.The Mn dopant strongly facilitates the formation of surface oxygen vacancies(VÖ)by liberating surface lattice oxygen(OL)via CO*+OL→CO_(2)*+VÖand promotes the reduction of NO,according to NO*+VÖ→N*+OL and 2N*→N_(2).The Mn dopant impact on both the adsorption of CO and activation of OL reveals that a balance between these two effects is critical for facilitating all reaction steps.
基金financially supported by the National Natural Science Foundation of China(Nos.52071284 and 51771172)the Zhejiang Provincial Natural Science Foundation of China(No.LQ22E010003).
文摘Element Sc is a promising candidate for optimizing the high-temperature mechanical properties of Al alloys.In this study,the Sc-solute,Al_(3) Sc-vacancy and Al_(3) Sc-solute interactions in aluminium are inves-tigated extensively by using first-principles calculations.The correlation between the various interaction energies and the solute atomic size,and the Sc-solute compound formation energy has been evaluated.A negative correlation between the first nearest neighbour Sc-solute binding energies and the lowest Sc-solute compound formation energies has been identified,while the second nearest neighbour Sc-solute binding energies increase monotonically with the solute atomic size.Al_(3) Sc precipitates can bind vacancy strongly at the specific atomic site,but their relatively low number density limits their influence on va-cancy behaviours during the ageing period shortly after quenching.Compared to the atomic size,the trend for solute segregating at the interface between Al_(3) Sc precipitate and Al bulk is more strongly re-lated to the Sc-solute binding energy.The calculated results can clarify the available experimental obser-vations for Al-Sc,Al-Cu,Al-Mg-Si and Al-Zn-Mg-Cu alloys,and it is hoped to guide the design of high-performance Al alloys.
基金supported by the Fundamental Research Funds for the Central Universities and Heilongjiang Provincial Natural Sci-ence Foundation of China(Grant No.YQ2020E009).
文摘Exploring high-performance soft actuators from biomass resources is significant for developing eco-friendly smart devices.Dried bonito(DB)flake is a common food as well as a biomass material,and it can produce irregular motion in changed moisture,just like dancing.Inspired by this intriguing phenomenon,a cost-effective,biocom patible,and biodegradable moisture-responsive DB film actuator with a gradient structure is developed.The DB film actuator exhibits rapid and reversible bending deformation triggered by a humidity gradient with a high bending speed(40°s-1)and a maximum bending angle(180°).More-over,the DB film actuator shows large bending deformation(-71°to+51°)with a high actuation force(214.7 Pa)in response to changes in relative humidity.Furthermore,the actuation performance can be also tuned by adjusting the thickness of the film.Potential applications of this actuator,including smart grippers,crawling robots,and biomimetic flowers for visible humidity sensing,are demonstrated.More importantly,smart sweat-responsive wearables that automatically deform to promote sweat evaporation and convection during exercise are constructed based on the actuator,making it promising for adaptive personal thermal management.This work offers an easily processable,cost-effective,and environmentally benign strategy to construct moisture-responsive actuators for future eco-friendly smart devices.
基金The authors thank the Fish Reproduction Station of Jinping-Guandi,China for providing the place for dissecting experiments.This study was supported by grants from the Yalong River Hydropower Development Company,Ltd.(No.YLDC-ZBA-2018116)the National Natural Science Foundation of China(No.31900373).We thank Megan Price for her help with language editing.
文摘Fish artificial breeding and release is an important method to restore wild populations of endemic fish species around the world.Schizothorax wangchiachii(SW)is an endemic fish in the upper Yangtze River and is one of the most important species for the artificial breeding and release program implemented in the Yalong River drainage system in China.It is unclear how artificially bred SW adapts to the changeable wild environment post-release,after being in a controlled and very different artificial environment.Thus,the gut samples were collected and analyzed for food composition and microbial 16S rRNA in artificially bred SW juveniles at day 0(before release),5,10,15,20,25,and 30 after release to the lower reaches of the Yalong River.The results indicated that SW began to ingest periphytic algae from the natural habitat before day 5,and this feeding habit is gradually stabilized at day 15.Prior to release,Fusobacteria are the dominant bacteria in the gut microbiota of SW,while Proteobacteria and Cyanobacteria generally are the dominant bacteria after release.The results of microbial assembly mechanisms illustrated that deterministic processes played a more prominent role than stochastic processes in the gut microbial community of artificially bred SW juveniles after releasing into the wild.Overall,the present study integrates the macroscopic and microscopic methods to provide an insight into the food and gut microbial reorganization in the released SW.This study will be an important research direction to explore the ecological adaptability of artificially bred fish after releasing into the wild.
文摘The liver is an extraordinary organ known for its remarkable regenerative capacity(1).This regenerative ability lays the foundation for various therapeutic approaches,such as partial hepatectomy(PHx),split-liver transplantation,live-donor liver transplantation,and associated liver partition and portal vein ligation for staged hepatectomy(ALPPS).