期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ultra-stable CsPbBr3 Perovskite Nanosheets for X-Ray Imaging Screen 被引量:4
1
作者 liangling wang Kaifang Fu +3 位作者 Ruijia Sun Huqiang Lian Xun Hu Yuhai Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期263-270,共8页
Wet chemistry methods,including hot-injection and precipitation methods,have emerged as major synthetic routes for high-quality perovskite nanocrystals in backlit display and scintillation applications.However,low che... Wet chemistry methods,including hot-injection and precipitation methods,have emerged as major synthetic routes for high-quality perovskite nanocrystals in backlit display and scintillation applications.However,low chemical yield hinders their upscale production for practical use.Meanwhile,the labile nature of halide-based perovskite poses a major challenge for long-term storage of perovskite nanocrystals.Herein,we report a green synthesis at room temperature for gram-scale production of CsPbBr3 nanosheets with minimum use of solvent,saving over 95% of the solvent for the unity mass nanocrystal production.The perovskite colloid exhibits record stability upon long-term storage for up to 8 months,preserving a photoluminescence quantum yield of 63% in solid state.Importantly,the colloidal nanosheets show self-assembly behavior upon slow solidification,generating a crack-free thin film in a large area.The uniform film was then demonstrated as an efficient scintillation screen for X-ray imaging.Our findings bring a scalable tool for synthesis of high-quality perovskite nanocrystals,which may inspire the industrial optoelectronic application of large-area perovskite film. 展开更多
关键词 CsPbBr3 PEROVSKITE NANOSHEETS SELF-ASSEMBLY X-RAY imaging SCREEN
下载PDF
Tunable terahertz wave difference frequency generation in a graphene/AlGaAs surface plasmon waveguide 被引量:2
2
作者 TAO CHEN liangling wang +3 位作者 LIJUAN CHEN JING wang HAIKUN ZHANG WEI XIA 《Photonics Research》 SCIE EI 2018年第3期186-192,共7页
Graphene-based surface plasmon waveguides(SPWs) show high confinement well beyond the diffraction limit at terahertz frequencies. By combining a graphene SPW and nonlinear material, we propose a novel graphene/AlGaAs ... Graphene-based surface plasmon waveguides(SPWs) show high confinement well beyond the diffraction limit at terahertz frequencies. By combining a graphene SPW and nonlinear material, we propose a novel graphene/AlGaAs SPW structure for terahertz wave difference frequency generation(DFG) under near-infrared pumps.The composite waveguide, which supports single-mode operation at terahertz frequencies and guides two pumps by a high-index-contrast AlGaAs∕Al Oxstructure, can confine terahertz waves tightly and realize good mode field overlap of three waves. The phase-matching condition is satisfied via artificial birefringence in an AlGaAs∕Al Ox waveguide together with the tunability of graphene, and the phase-matching terahertz wave frequency varies from 4 to 7 THz when the Fermi energy level of graphene changes from 0.848 to 2.456 eV. Based on the coupled-mode theory, we investigate the power-normalized conversion efficiency for the tunable terahertz wave DFG process by using the finite difference method under continuous wave pumps, where the tunable bandwidth can reach 2 THz with considerable conversion efficiency. To exploit the high peak powers of pulses, we also discuss optical pulse evolutions for pulse-pumped terahertz wave DFG processes. 展开更多
关键词 ALGAAS Tunable terahertz wave difference frequency generation in a graphene/AlGaAs surface plasmon waveguide THZ
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部