The magnetization-direction-dependent inverse spin Hall effect(ISHE) has been observed in NiFe film during spin Seebeck measurement in IrMn/NiFe/Cu/yttrium iron garnet(YIG) multilayer structure, where the YIG and NiFe...The magnetization-direction-dependent inverse spin Hall effect(ISHE) has been observed in NiFe film during spin Seebeck measurement in IrMn/NiFe/Cu/yttrium iron garnet(YIG) multilayer structure, where the YIG and NiFe layers act as the spin injector and spin current detector, respectively. By using the NiFe/IrMn exchange bias structure, the magnetization direction of YIG(MYIG) can be rotated with respect to that of NiFe(MNiFe) with a small magnetic field, thus allowing us to observe the magnetization-direction-dependent inverse spin Hall effect voltage in NiFe layer. Compared with the situation that polarization direction of spin current(σs) is perpendicular to MNiFe, the spin Seebeck voltage is about 30% larger than that when σs and MNiFe are parallel to each other. This phenomenon may originate from either or both of stronger interface or bulk scattering to spin current when σs and MNiFe are perpendicular to each other. Our work provides a way to control the voltage induced by ISHE in ferromagnets.展开更多
[FeNi(3 nm)/Zn1-xCoxO(3 nm)]2/ZnO(d nm)/[Zn1-xCoxO(3 nm)/Co(3 nm)]2 (d=3 and 10) semiconductor junctions were prepared by magnetron sputtering system and photolithography. The spin valve effect was observe...[FeNi(3 nm)/Zn1-xCoxO(3 nm)]2/ZnO(d nm)/[Zn1-xCoxO(3 nm)/Co(3 nm)]2 (d=3 and 10) semiconductor junctions were prepared by magnetron sputtering system and photolithography. The spin valve effect was observed in these junctions because the utility of the ferromagnetic composite layers acted as soft and hard magnetic layers. The electrical detection was performed by measuring the magnetoresistance of these junctions to investigate the current spin polarization asc in the ZnO layer and the spin injection efficiency η of spin-polarized electrons. asc was reduced from 11.7% (and 10.5%) at 90 K to 7.31% (and 5.93%) at room temperature for d=3 (and d=10). And η was reduced from 39.5% (and 35.5%) at 90 K to 24.7% (and 20.0%) at room temperature for d=3 (and d=10).展开更多
基金supported by the National Basic Research Program of China(Grant No.2015CB921502)the National Natural Science Foundation of China(Grant Nos.11474184 and 11627805)+1 种基金the 111 Project,China(Grant No.B13029)the Fundamental Research Funds of Shandong University,China
文摘The magnetization-direction-dependent inverse spin Hall effect(ISHE) has been observed in NiFe film during spin Seebeck measurement in IrMn/NiFe/Cu/yttrium iron garnet(YIG) multilayer structure, where the YIG and NiFe layers act as the spin injector and spin current detector, respectively. By using the NiFe/IrMn exchange bias structure, the magnetization direction of YIG(MYIG) can be rotated with respect to that of NiFe(MNiFe) with a small magnetic field, thus allowing us to observe the magnetization-direction-dependent inverse spin Hall effect voltage in NiFe layer. Compared with the situation that polarization direction of spin current(σs) is perpendicular to MNiFe, the spin Seebeck voltage is about 30% larger than that when σs and MNiFe are parallel to each other. This phenomenon may originate from either or both of stronger interface or bulk scattering to spin current when σs and MNiFe are perpendicular to each other. Our work provides a way to control the voltage induced by ISHE in ferromagnets.
基金supported by the State Key Project of Fundamental Research of China No.2007CB924903 and NSFC No.50572053
文摘[FeNi(3 nm)/Zn1-xCoxO(3 nm)]2/ZnO(d nm)/[Zn1-xCoxO(3 nm)/Co(3 nm)]2 (d=3 and 10) semiconductor junctions were prepared by magnetron sputtering system and photolithography. The spin valve effect was observed in these junctions because the utility of the ferromagnetic composite layers acted as soft and hard magnetic layers. The electrical detection was performed by measuring the magnetoresistance of these junctions to investigate the current spin polarization asc in the ZnO layer and the spin injection efficiency η of spin-polarized electrons. asc was reduced from 11.7% (and 10.5%) at 90 K to 7.31% (and 5.93%) at room temperature for d=3 (and d=10). And η was reduced from 39.5% (and 35.5%) at 90 K to 24.7% (and 20.0%) at room temperature for d=3 (and d=10).