Photocatalytic conversion of CO_(2)into fuels such as CO,CH_(4),and CH_(3)OH,is a promising approach for achieving carbon neutrality.Bismuth oxyhalides(BiOX,where X=Cl,Br,and I)are appropriate photocatalysts for this ...Photocatalytic conversion of CO_(2)into fuels such as CO,CH_(4),and CH_(3)OH,is a promising approach for achieving carbon neutrality.Bismuth oxyhalides(BiOX,where X=Cl,Br,and I)are appropriate photocatalysts for this purpose due to the merits of visible-light-active,efficient charge separation,and easy-to-modify crystal structure and surface properties.For practical applications,multiple strategies have been proposed to develop high-efficiency BiOX-based photocatalysts.This review summarizes the development of different approaches to prepare BiOX-based photocatalysts for efficient CO_(2)reduction.In the review,the fundamentals of photocatalytic CO_(2)reduction are introduced.Then,several widely used modification methods for BiOX photocatalysts are systematacially discussed,including heterojunction construction,introducing oxygen vacancies(OVs),Bi-enrichment,heteroatom-doping,and morphology design.Finally,the challenges and prospects in the design of future BiOX-based photocatalysis for efficient CO_(2)reduction are examined.展开更多
基金supported by the Research Grants Council of the Hong Kong Special Administrative Region(No.14307322)the Excellent Young Scientist Fund(Hongkong and Macao)from the National Natural Science Foundation of China(No.22222208)。
文摘Photocatalytic conversion of CO_(2)into fuels such as CO,CH_(4),and CH_(3)OH,is a promising approach for achieving carbon neutrality.Bismuth oxyhalides(BiOX,where X=Cl,Br,and I)are appropriate photocatalysts for this purpose due to the merits of visible-light-active,efficient charge separation,and easy-to-modify crystal structure and surface properties.For practical applications,multiple strategies have been proposed to develop high-efficiency BiOX-based photocatalysts.This review summarizes the development of different approaches to prepare BiOX-based photocatalysts for efficient CO_(2)reduction.In the review,the fundamentals of photocatalytic CO_(2)reduction are introduced.Then,several widely used modification methods for BiOX photocatalysts are systematacially discussed,including heterojunction construction,introducing oxygen vacancies(OVs),Bi-enrichment,heteroatom-doping,and morphology design.Finally,the challenges and prospects in the design of future BiOX-based photocatalysis for efficient CO_(2)reduction are examined.