This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used t...This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress.展开更多
Periodic nitrogen-doped homoepitaxial nano-multilayers were grown by microwave plasma chemical vapor deposition. The residual time of gases(such as CH4and N2) in the chamber was determined by optical emission spectros...Periodic nitrogen-doped homoepitaxial nano-multilayers were grown by microwave plasma chemical vapor deposition. The residual time of gases(such as CH4and N2) in the chamber was determined by optical emission spectroscopy to determine the nano-multilayer growth process, and thin, nanoscale nitrogen-doped layers were obtained. The highest toughness of 18.2 MPa·m^(1/2)under a Young’s modulus of1000 GPa is obtained when the single-layer thickness of periodic nitrogen-doped nano-multilayers is about 96 nm. The fracture toughness of periodic nitrogen-doped CVD layer is about 2.1 times that of the HPHT seed substrate. Alternating tensile and compressive stresses are derived from periodic nitrogen doping;hence, the fracture toughness is significantly improved. Single-crystal diamond with a high toughness demonstrates wide application prospects for high-pressure anvils and single-point diamond cutting tools.展开更多
In this study,uniform diamond films with a diameter of 100 mm were deposited in a 15 kW/2.45 GHz ellipsoidal microwave plasma chemical vapour deposition system.A phenomenological model previously developed by our grou...In this study,uniform diamond films with a diameter of 100 mm were deposited in a 15 kW/2.45 GHz ellipsoidal microwave plasma chemical vapour deposition system.A phenomenological model previously developed by our group was used to simulate the distribution of the electric strength and electron density of plasma.Results indicate that the electric field in the cavity includes multiple modes,i.e.TM_(02) and TM_(03).When the gas pressure exceeds 10 kPa,the electron density of plasma increases and plasma volume decreases.A T-shaped substrate was developed to achieve uniform temperature,and the substrate was suspended in air fromφ70 to 100 mm,thus eliminating vertical heat dissipation.An edge electric field was added to the system after the introduction of the T-shaped substrate.Moreover,the plasma volume in this case was greater than that in the central electric field but smaller than that in the periphery electric field of the TM_(02) mode.This indicates that the electric field above and below the edge benefits the plasma volume rather than the periphery electric field of the TM_(02) mode.The quality,uniformity and surface morphology of the deposited diamond films were primarily investigated to maintain substrate temperature uniformity.When employing the improved substrate,the thickness unevenness of theφ100 mm diamond film decreased from 22%to 7%.展开更多
Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numer- ous advantages for next generation electronics (e.g., fast speed, low power consumptio...Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numer- ous advantages for next generation electronics (e.g., fast speed, low power consumption and simple process), that when combined with the unique nature of the versatile allotropes of carbon elements, are creating an electronics revolution. Carbon electronics are greatly advancing with new preparations and sophisticated designs. In this perspective, representatives with various dimensions, e.g., carbon nanotubes, graphene, bulk diamond, and their extraordinary performance, are reviewed. The associated state-of-the-art devices and composite hybrid all-carbon structures are also emphasized to reveal their potential in the electronics field. Advances in commercial production have improved the cost effi-ciency, material quality, and device design, accelerating the promise of carbon materials.展开更多
基金supported by the National Key Research and Development Program(No.2019YFE03100200)the State Key Lab for Advanced Metals and Materials,the Fund of National Key Laboratory of Solid-State Microwave Devices and Circuits,the National Natural Science Foundation of China(No.52102034)the Or-ganized Research Fund of North China University of Tech-nology(No.2023YZZKY12).The authors are very grateful for the financial support of these institutions.
文摘This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress.
基金financially supported by the National Key Research and Development Program of China (No.2018YFB0406501)the European Union’s Horizon 2020 Research and Innovation Staff Exchange (RISE) Scheme (No. 734578)the Beijing Natural Science Foundation (No. 4192038)。
文摘Periodic nitrogen-doped homoepitaxial nano-multilayers were grown by microwave plasma chemical vapor deposition. The residual time of gases(such as CH4and N2) in the chamber was determined by optical emission spectroscopy to determine the nano-multilayer growth process, and thin, nanoscale nitrogen-doped layers were obtained. The highest toughness of 18.2 MPa·m^(1/2)under a Young’s modulus of1000 GPa is obtained when the single-layer thickness of periodic nitrogen-doped nano-multilayers is about 96 nm. The fracture toughness of periodic nitrogen-doped CVD layer is about 2.1 times that of the HPHT seed substrate. Alternating tensile and compressive stresses are derived from periodic nitrogen doping;hence, the fracture toughness is significantly improved. Single-crystal diamond with a high toughness demonstrates wide application prospects for high-pressure anvils and single-point diamond cutting tools.
基金sponsored by National Key Research and Development Program of China(No.2019YFE03100200)National Natural Science Foundation of China(No.5210020483)+1 种基金Postdoc Research Foundation of Shunde Graduate School of University of Science and Technology Beijing(No.2020BH015)Fundamental Research Funds for the Central Universities(No.FRF-MP-20-48)。
文摘In this study,uniform diamond films with a diameter of 100 mm were deposited in a 15 kW/2.45 GHz ellipsoidal microwave plasma chemical vapour deposition system.A phenomenological model previously developed by our group was used to simulate the distribution of the electric strength and electron density of plasma.Results indicate that the electric field in the cavity includes multiple modes,i.e.TM_(02) and TM_(03).When the gas pressure exceeds 10 kPa,the electron density of plasma increases and plasma volume decreases.A T-shaped substrate was developed to achieve uniform temperature,and the substrate was suspended in air fromφ70 to 100 mm,thus eliminating vertical heat dissipation.An edge electric field was added to the system after the introduction of the T-shaped substrate.Moreover,the plasma volume in this case was greater than that in the central electric field but smaller than that in the periphery electric field of the TM_(02) mode.This indicates that the electric field above and below the edge benefits the plasma volume rather than the periphery electric field of the TM_(02) mode.The quality,uniformity and surface morphology of the deposited diamond films were primarily investigated to maintain substrate temperature uniformity.When employing the improved substrate,the thickness unevenness of theφ100 mm diamond film decreased from 22%to 7%.
基金the National Key Research and Development Program of China(No.2016YFE0133200)National Natural Science Foundation of China(No.52172037)+4 种基金European Union’s Horizon 2020 Research and Innovation Staff Exchange Scheme(No.734578)Post-doctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing(No.2021 BH006)Beijing Municipal Natural Science Foundation(Nos.2212036 and 4192038)Science and Technology Innovation Special Project of Foshan Government(Nos.BK20BE021 and BK21BE004)Special thanks to the nation-al high-level-university sponsored graduate program of China Scholarship Council(CSC),USTB-Monte Biance Joint R&D Center and joint-postdoc research program of Shunde Graduate School of USTB.
文摘Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numer- ous advantages for next generation electronics (e.g., fast speed, low power consumption and simple process), that when combined with the unique nature of the versatile allotropes of carbon elements, are creating an electronics revolution. Carbon electronics are greatly advancing with new preparations and sophisticated designs. In this perspective, representatives with various dimensions, e.g., carbon nanotubes, graphene, bulk diamond, and their extraordinary performance, are reviewed. The associated state-of-the-art devices and composite hybrid all-carbon structures are also emphasized to reveal their potential in the electronics field. Advances in commercial production have improved the cost effi-ciency, material quality, and device design, accelerating the promise of carbon materials.