期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Inhibiting the phase transition of WO_(3)for highly stable aqueous electrochromic battery
1
作者 Zhisheng Wu Zhendong Lian +10 位作者 Ting Ding Jielei Li Jincheng Xu Jinxiao Wang liangxing zhang Bo Wang Shi Chen Peng Xiao Hua Xu Shuang-Peng Wang Kar Wei Ng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期86-95,I0003,共11页
Aqueous electrochromic battery(ECB)has shown intense potential for achieving energy storage and saving simultaneously.While tungsten oxide(WO_(3))is the most promising EC material for commercialization,the cycling sta... Aqueous electrochromic battery(ECB)has shown intense potential for achieving energy storage and saving simultaneously.While tungsten oxide(WO_(3))is the most promising EC material for commercialization,the cycling stability of WO_(3)-based aqueous ECBs is currently unsatisfactory due to the repeated phase transition during the redox process and the corrosion by acidic electrolytes.Herein,we present a titanium-tungsten oxide alloy(Ti-WO_(3))with controllable morphology and crystal phase synthesized by a facile hot injection method to overcome the challenges.In contrast to conventional monoclinic WO_(3),the Ti-WO_(3)nanorods can stably maintain their cubic crystal phase during the redox reaction in an acidic electrolyte,thus leading to dramatically enhanced response speed and cycling stability,Specifically,when working in a well-matched hybrid Al^(3+)/Zn^(2+)aqueous electrolyte,our phasetransition-free cubic Ti-WO_(3)exhibits an ultra-high cycling stability(>20000 cycles),fast response speed(3,95 s/4,65 s for bleaching/coloring),as well as excellent discharge areal capacity of 214.5 mA h m^(-2),We further fabricate a fully complementa ry aqueous electrochromic device,for the first time,using a Ti-WO_(3)/Prussian blue device architecture.Remarkably,the complementary ECB shows>10000 stable operation cycles,attesting to the feasibility of our Ti-WO_(3)for practical applications.Our work validates the significance of inhibiting the phase transitions of WO_(3)during the electrochromic process for realizing highly cyclable aqueous ECB,which can possibly provide a generalized design guidance for other high-quality metallic oxides for electrochemical applications. 展开更多
关键词 Aqueous electrochromic battery Ti-WO_(3) Phase transition Long-term stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部