A novel Young's modulus measurement scheme based on fiber Bragg gratings (FBG) is proposed and demonstrated experimentally. In our method, a universal formula relating the Bragg wavelength shift to Young's mod...A novel Young's modulus measurement scheme based on fiber Bragg gratings (FBG) is proposed and demonstrated experimentally. In our method, a universal formula relating the Bragg wavelength shift to Young's modulus is derived and metal wires are loaded strain by using the static stretching method. The Young's modulus of copper wires, aluminum wires, nickel wires, and tungsten wires are separately measured. Experimental results show that the FBG sensor exhibits high measurement accuracy, and the measurement errors relative to the nominal value is less than 1.0%. The feasibility of the FBG test method is confirmed by comparing it with the traditional charge coupled device (CCD) imaging method. The proposed method could find the potential application in the material selection, especially in the field that the size of metal wires is very small and the strain gauges cannot be qualified.展开更多
基金the National Natural Science Foundation of China under Grant No. 61565002Guangxi Province Key Research and Development Program under Grant Nos. AB 17129027 and AB18221033.
文摘A novel Young's modulus measurement scheme based on fiber Bragg gratings (FBG) is proposed and demonstrated experimentally. In our method, a universal formula relating the Bragg wavelength shift to Young's modulus is derived and metal wires are loaded strain by using the static stretching method. The Young's modulus of copper wires, aluminum wires, nickel wires, and tungsten wires are separately measured. Experimental results show that the FBG sensor exhibits high measurement accuracy, and the measurement errors relative to the nominal value is less than 1.0%. The feasibility of the FBG test method is confirmed by comparing it with the traditional charge coupled device (CCD) imaging method. The proposed method could find the potential application in the material selection, especially in the field that the size of metal wires is very small and the strain gauges cannot be qualified.