期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device
1
作者 Yanhui Zhang lianhua ma +3 位作者 Hailiang Su Jirong Qin Zhining Chen Kaibiao Deng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1961-1980,共20页
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t... In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect. 展开更多
关键词 Structural optimization front underrun protection device carbon fiber reinforced plastic multi-scale model lightweight design
下载PDF
Time-History Dynamic Characteristics of Reinforced Soil-Retaining Walls
2
作者 lianhua ma Min Huang Linfeng Han 《Structural Durability & Health Monitoring》 EI 2024年第6期853-869,共17页
Given the complexities of reinforced soil materials’constitutive relationships,this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil... Given the complexities of reinforced soil materials’constitutive relationships,this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil constitutive model that takes this sliding into account.A finite element dynamic time history calculation software for composite response analysis was created using the Fortran programming language,and time history analysis was performed on reinforced soil retaining walls and gravity retaining walls.The vibration time histories of reinforced soil retaining walls and gravity retaining walls were computed,and the dynamic reactions of the two types of retaining walls to vibration were compared and studied.The dynamic performance of reinforced earth retaining walls was evaluated. 展开更多
关键词 Reinforced earth retaining walls time history dynamic analysis finite element
下载PDF
The Influence of Entanglements of Net Chains on Phase Transition Temperature of Sensitive Hydrogels in Chemo-Mechanical Coupled Fields 被引量:1
3
作者 Tao Li Qingsheng Yang +1 位作者 lianhua ma Xiaojun Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期995-1014,共20页
Phase transition of hydrogel,which is polymerized by polymer network,can be regarded as the transition of polymer network stability.The stability of the polymer network might be changed when the external environment c... Phase transition of hydrogel,which is polymerized by polymer network,can be regarded as the transition of polymer network stability.The stability of the polymer network might be changed when the external environment changed.This change will lead to the transformation of sensitive hydrogels stability,thus phase transition of hydrogel take place.Here,we present a new free density energy function,which considers the non-gaussianity of the polymer network,chains entanglement and functionality of junctions through adding Gent hyplastic model and Edwards-Vilgis slip-link model to Flory-Huggins theory.A program to calculate the phase transition temperature was written based on new free energy function.Taking PNIPAM hydrogel as an example,the effects of network entanglement on the phase transition temperature of hydrogel were studied by analyzing the microstructure parameters of the hydrogel networks.Analytical results suggest a significant relationship between phase transition temperature and entanglement network. 展开更多
关键词 Sensitive hydrogel ENTANGLEMENTS phase transition chemo-mechanical coupling fields.
下载PDF
Micromechanics-Based Elastic Fields of Closed-Cell Porous Media
4
作者 lianhua ma Qingsheng Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第2期239-259,共21页
Fluid-filled closed-cell porous media could exhibit distinctive features which are influenced by initial fluid pressures inside the cavities.Based on the equivalent farfield method,micromechanics-based solutions for t... Fluid-filled closed-cell porous media could exhibit distinctive features which are influenced by initial fluid pressures inside the cavities.Based on the equivalent farfield method,micromechanics-based solutions for the local elastic fields of porous media saturated with pressurized fluid are formulated in this paper.In the present micromechanics model,three configurations are introduced to characterize the different state the closed-cell porous media.The fluid-filled cavity is assumed to be a compressible elastic solid with a zero shear modulus,and the pressures in closed pores are represented by eigenstrains introduced in fluid domains.With the assumption of spheroidal fluidfilled pores,the local stress and strain fields in solid matrix of porous media are derived by using the Exterior-Point Eshelby tensors,which are dependent of the Poisson’s ratio of solid matrix and the locations of the investigated material points outside the spheroidal fluid domain.The reliability and accuracy of the analytical elastic solutions are verified by a classical example.Moreover,for finite volume fraction of the fluid inclusions,the local elastic fields of the porous media subjected to the initial fluid pressure and external load are obtained.The results show that the present micromechanics model provides an effective approach to characterize the local elastic fields of the materials with closed-cell fluid-filled pores. 展开更多
关键词 Porous media fluid-filled pores local elastic FIELDS FLUID pressure MICROMECHANICS
下载PDF
Multi-field Coupled Inverse Hall–Petch Relations for Ferroelectric Nanocrystals
5
作者 Xiaodong Zhang Wei Yan +5 位作者 Xuhui Lou Yujun Chen Zhihong Zhou Qingyuan Wang lianhua ma Xiaobao Tian 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第1期139-147,共9页
Tailoring grain size can improve the strength of polycrystals by regulating the proportion of grains to grain boundaries and the interaction area.As the grain size decreases to the nanoscale,the deformation mechanism ... Tailoring grain size can improve the strength of polycrystals by regulating the proportion of grains to grain boundaries and the interaction area.As the grain size decreases to the nanoscale,the deformation mechanism in polycrystals shifts from being primarily mediated by dislocations to deformation occurring within the grains and grain boundaries.However,the mechanism responsible for fine-grain strengthening in ferroelectric materials remains unclear,primarily due to the complex multi-field coupling effect arising from spontaneous polarization.Through molecular dynamics simulations,we investigate the strengthening mechanism of barium titanate(BaTiO3),with extremely fine-grain sizes.This material exhibits an inverse Hall–Petch relationship between grain size and strength,rooting in the inhomogeneous concentration of atomic strain and grain rotation.Furthermore,we present a theoretical model to predict the transition from the inverse Hall–Petch stage to the Hall–Petch stage based on strength variations with size,which aligns well with the simulation results.It has been found that the piezoelectric properties of the BaTiO3 are affected by polarization domain switching at various grain sizes.This study enhances our understanding of the atomic-scale mechanisms that contribute to the performance evolution of fine-grain nano-ferroelectric materials.It also provides valuable insights into the design of extremely small-scale ferroelectric components. 展开更多
关键词 FERROELECTRICS Multi-field coupling Molecular dynamics Fine-grain reinforcement Inverse Hall-Petch effect
原文传递
Mechanical Analysis and Strength Checking of Current Collector Failure in the Winding Process of Lithium-Ion Batteries 被引量:2
6
作者 Ran Tao Zhibo Liang +4 位作者 Shengxin Zhu Le Yang lianhua ma Wei-li Song Haosen Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第3期297-306,共10页
The current collector fracture failure of lithium-ion batteries(LIBs)occurs during its winding production process frequently,and the consequent damages are usually large,but little research has been conducted on this ... The current collector fracture failure of lithium-ion batteries(LIBs)occurs during its winding production process frequently,and the consequent damages are usually large,but little research has been conducted on this phenomenon.This work stems from the difficulty and obstacles in the winding process of actual production of LIBs.The fracture failure of the current collectors is easily caused by the evolution and mutation of the mechanical behavior during the winding process,resulting in safety hazards and poor efficiency.The purpose of this work is to reveal the evolution and distribution mechanism of circumferential strain of the current collectors on the fracture failure under the constraint of winding process.Experimental tests,finite element calculations and theoretical model are used to study the evolution and distribution of circumferential strain.The dynamic evolution process of circumferential strain is tested accurately,and the mechanism of fracture failure of current collectors is revealed.The criterion for current collector strength is proposed based on the results of strain analysis and SEM observation. 展开更多
关键词 Lithium-ion batteries Circumferential strain Mechanical properties Surface damage Strength checking
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部