[Objectives]To study the germplasm resources of excellent peach cultivars.[Methods]Five peach cultivars were introduced,in-cluding‘Jinxiu’peach,‘Jinxiang’peach,‘Chunxiao’peach,‘Hujingmilu’peach and‘018 nectar...[Objectives]To study the germplasm resources of excellent peach cultivars.[Methods]Five peach cultivars were introduced,in-cluding‘Jinxiu’peach,‘Jinxiang’peach,‘Chunxiao’peach,‘Hujingmilu’peach and‘018 nectarine’peach.Then,these five cultivars were used to study the biological characteristics of peach trees,namely,as phenology,fruit quality,heat resistance,cold resistance and other resistance.[Results]Five cultivars of peach plants grew fast and robust,among which‘018 nectarine’had very crisp fruit,‘Jinxiu’,‘Jinxiang’,‘Chunxiao’and‘Hujingmilu’had very sweet fruitꎻthe peach trees of these five cultivars have good water resistance,heat resist-ance and cold resistance.[Conclusions]The results of this study can not only provide a reference for the introduction of peach trees,but also provide a practical basis for the large-scale planting of peach trees.展开更多
[Objectives]To explore the planting adaptability of vegetables in Shanghai.[Methods]In this paper,cowpea(Vigna unguiculate(L.)Walp.),cucumber(Cucumis sativus L.),eggplant(Solanum melongena L.)and potato(Solanum tubero...[Objectives]To explore the planting adaptability of vegetables in Shanghai.[Methods]In this paper,cowpea(Vigna unguiculate(L.)Walp.),cucumber(Cucumis sativus L.),eggplant(Solanum melongena L.)and potato(Solanum tuberosum L.)were selected as experimental materials and planted in the open air.The growth status,the occurrence of diseases and insect pests,and the taste evaluation of these four kinds of common vegetables were mainly studied.[Results]The results showed that the four kinds of common vegetables in Shanghai had strong growth,strong adaptability,less pests and diseases,and good taste.[Conclusions]The cowpea,cucumber,eggplant,and potato are suitable for planting in Shanghai.展开更多
[Objectives]To study the adaptability of introduced pear.[Methods]Five pear varieties,"Aidang"pear,"Taiwan Zaomi"pear,"Cuiguan"pear,"Tianjin Yali"pear and"Zaosheng Xinshui&...[Objectives]To study the adaptability of introduced pear.[Methods]Five pear varieties,"Aidang"pear,"Taiwan Zaomi"pear,"Cuiguan"pear,"Tianjin Yali"pear and"Zaosheng Xinshui"pear,were introduced.Then,using these five varieties,the phenology of pear trees,various characters of fruit,stress resistance(heat tolerance and cold tolerance)of varieties were studied.[Results]The plants of 5 varieties of pear trees grew fast and were robust;in late March,it went into the flowering period;"Aidang"pear fruit had a certain number of stone cells;"Taiwan Zaomi"pear had the highest sweetness;"Cuiguan"pear had the largest fruit;these five varieties of pear trees had good water resistance,heat resistance and cold resistance.[Conclusions]This study can provide a reference for the introduction of pear trees,and can also provide a practical basis for the large-scale planting of pear trees.展开更多
[Objectives]To study the introduction performance of pomegranate(Punica granatum)varieties in Shanghai area.[Methods]In this experiment,five pomegranate varieties were introduced,namely‘American 002’pomegranate,‘Hu...[Objectives]To study the introduction performance of pomegranate(Punica granatum)varieties in Shanghai area.[Methods]In this experiment,five pomegranate varieties were introduced,namely‘American 002’pomegranate,‘Huohulu’pomegranate,‘Wanli No.1’pomegranate,‘Yicheng Hongpitian’pomegranate,and‘American Qingpisuan’pomegranate.Then,using these five varieties,various biological traits such as phenology and fruit quality of pomegranate,as well as stress resistance such as heat resistance and cold resistance were studied.[Results]Five varieties of pomegranates began to mature in succession in early September;the smallest single fruit weight was 90 g,and the largest was 110 g;the plants grew fast,the plants were strong,the flowers were single petal,and plants bore fruits which were ornamental and edible.In addition,the pomegranates of these five varieties had good water tolerance and heat resistance,and good cold resistance.[Conclusions]This study is intended to provide a certain reference for the introduction of pomegranate varieties,and also provide a practical basis for the large-scale planting of pomegranate.展开更多
[Objectives]In order to study the flower characteristics of mulberry and evaluate the resources of fruit mulberry.[Methods]Firstly,the resources of fruit mulberry were collected,and four varieties of fruit mulberry(‘...[Objectives]In order to study the flower characteristics of mulberry and evaluate the resources of fruit mulberry.[Methods]Firstly,the resources of fruit mulberry were collected,and four varieties of fruit mulberry(‘Dashi’mulberry,‘Changguo’milk mulberry,‘agate’mulberry and‘Xiangjin’milk mulberry)were collected.Then,the flower characteristics,fruit quality,and adaptability of fruit mulberry were studied.[Results]Mulberry is a dioecious plant,and the inflorescences are lurocatkin.The male flowers will fall off automatically,while the female flowers will develop into fruit.The four varieties of fruit mulberry have good adaptability in Shanghai,and their fruits have their own characteristics.At the same time,in order to use the resources of fruit mulberry,mulberry fruit picking activities were carried out for many times.[Conclusions]This study provides a reference for the cultivation,collection,utilization and evaluation of mulberry.展开更多
In this study, a poly(ether block amide) (Pebax 1657) composite membrane applied for COa capture was prepared by coating Pebax 1657 solution on polyacrylonitrile (PAN) ultrafiltration membrane. Ethanol/water mix...In this study, a poly(ether block amide) (Pebax 1657) composite membrane applied for COa capture was prepared by coating Pebax 1657 solution on polyacrylonitrile (PAN) ultrafiltration membrane. Ethanol/water mixture was used as the solvent of Pebax and the effects of ethanol/water mass ratios and Pebax concentration on the permeation properties of composite membrane were studied. To enhance the com- posite membrane permeance, the gutter layer, made from reactive amino silicone crosslinking with potydimethylsiloxane (PDMS), was de- signed. The influence of crosslinldng degree of the gutter layer on membrane performance was investigated. As a result, a Pebardamino- PDMS/PAN multilayer membrane with hexane resistance was developed, showing CO2 permeance of 350 GPU and CO2/N2 selectivity over 50. The blend of polyethylene glycol dimethyl ether (PEG-DME) with Pebax as coating material was studied to further improve the membrane performance. After being combined with PEG-DME additive, CO2 permeance of the final Pebax-PEG-DME/amino-PDMS/PAN composite membrane reached 400 GPU above with CO2/Na selectivity over 65.展开更多
With the increase of axle load and the train speed, dynamic interaction of train-track system becomes so exacerbated that the deformation and dynamic response of subgrade are more aggravated. The differential settleme...With the increase of axle load and the train speed, dynamic interaction of train-track system becomes so exacerbated that the deformation and dynamic response of subgrade are more aggravated. The differential settlement will be created in bridge-embankment transition section under such dynamic action, and an adverse effect on the train operation safety can be caused. Meanwhile, differential settlement will produce additional dynamic effect when high-speed trains go through the transition between bridge-embankment. Such dynamic action will aggravate the differential settlement and subgrade damage. This paper applies the methods of field test and finite-element to systematically study the dynamic response characteristics of subgrade in bridge-embankment transition section of heavy haul railway under dynamic load for the first time. This research is focused on the analysis of influence of the different axle load, train speed, filled soil modulus, etc.. At last, the dynamic response rules are systematically summarized.展开更多
Fusarium wilt,a disease caused by Fusarium oxysporum f.sp batatas(Fob)is an important disease in sweet potato production.Using endophytic bacteria for biological control of sweet potato diseases is one of the importan...Fusarium wilt,a disease caused by Fusarium oxysporum f.sp batatas(Fob)is an important disease in sweet potato production.Using endophytic bacteria for biological control of sweet potato diseases is one of the important ways.A Bacillus subtilis with antagonistic effect on Fusarium wilt of sweet potato was isolated from soil by confrontation culture.According to the biological characteristics,16S rDNA sequence analysis,and physiological and biochemical analysis,the Bacillus subtilis HAAS01 was named.A pot experiment was conducted for the biological control experiment of strain HAAS01,and the endogenous hormone content,antioxidant enzyme activity,soluble protein content,and related gene expressions of sweet potato plants were detected.The results showed that the HAAS01 strain could promote the production of endogenous hormones and resist the infection of plant diseases together with defensive enzymes and upregulation of related gene expressions.In summary,Bacillus subtilis HAAS01 was effective in controlling Fusarium wilt of sweet potato and has potential for application and development.展开更多
ZSM-5 molecular sieve is a kind of high silicon microporous crystalline material that possesses three-dimensional frameworks.It has two kinds of ten member ring channels including a set of straight channels and a set ...ZSM-5 molecular sieve is a kind of high silicon microporous crystalline material that possesses three-dimensional frameworks.It has two kinds of ten member ring channels including a set of straight channels and a set of sine channels.These two sets of channels are perpendicular and the orifices are oval.Silica glasses are widely used in optical instru-展开更多
Contributed to the unique size-tunable properties,quantum dots have attracted great interest and been applied in some promising areas involving light emitting diodes,lasers,biomedicalimaging and sensors.However,quantu...Contributed to the unique size-tunable properties,quantum dots have attracted great interest and been applied in some promising areas involving light emitting diodes,lasers,biomedicalimaging and sensors.However,quantum dots have a seriously intrinsic limitation,namely,low展开更多
Developing highly efficient microwave absorbing materials(MAMs)to ameliorate the electromagnetic(EM)response and facilitate energy absorption is crucial in both the civil and military industries.Metal-organic framewor...Developing highly efficient microwave absorbing materials(MAMs)to ameliorate the electromagnetic(EM)response and facilitate energy absorption is crucial in both the civil and military industries.Metal-organic framework(MOF)derived nanoporous carbon composites have emerged as advanced MAMs ow-ing to their rich porosity,tunable compositions,facile functionalization,and morphology diversity.To-gether with the flourishing development of composition-tuning strategy,the rational dimension design and elaborate control over the architectures have also evolved into an effective approach to regulating their EM properties.Herein,we provide a comprehensive review of the recent advances in using di-mension and morphology modulation to adjust the microwave attenuation capacities for MOF-derived carbon composites.The underlying design rules and unique advantages for the MAMs of various dimen-sions were discussed with the selection of representative work,providing general concepts and insight on how to efficiently tune the morphologies.Accordingly,the fundamental dimension-morphology-function relationship was also elucidated.Finally,the challenges and perspectives of dimension design and mor-phology control over MOF-derived MAMs were also presented.展开更多
Carbon materials are important but find little application in bending components due to their unsatisfy-ing bending strength(300-500 MPa).To fabricate carbon composites of high bending strength is a tough task,even us...Carbon materials are important but find little application in bending components due to their unsatisfy-ing bending strength(300-500 MPa).To fabricate carbon composites of high bending strength is a tough task,even using carbon fibers(CFs)structures as reinforcements.Here we report lamellar carbon com-posites of ultra-high bending strength(>1.2 GPa)produced from CFs cloths coated with nano-diamond(ND)particles by spark plasma sintering(SPS).When NDs are sandwiched between CFs cloths,some ND particles penetrate into interstices between CFs.During the sintering,the ND particles are transformed into graphite onions;this transformation is associated with an active state of carbon atoms participating in the change.As a result,the carbon onions strongly bond the CFs together,helping consolidate the com-pacts into strong lamellar carbon composite bulks.The produced graphite onions from the NDs located at crossings of CFs tows form a robust mortise and tenon structure,which helps the bending strength of the lamellar composite from the compact of 40 wt.%NDs exceed 1.2 GPa.The as-prepared compos-ite possesses the highest specific bending strength of all current high temperature structural materials reported so far.This work may pave a new way for high performance carbon materials.展开更多
All-inorganic CsPbX_(3)(X=Cl,Br,I)perovskite nanocrystals(NCs)are emerging as promising candidate materials for optoelectronic devices due to their splendid optical and electrical properties.However,the intrinsic inst...All-inorganic CsPbX_(3)(X=Cl,Br,I)perovskite nanocrystals(NCs)are emerging as promising candidate materials for optoelectronic devices due to their splendid optical and electrical properties.However,the intrinsic instability greatly limits their practical application.Herein,a feasible strategy is proposed for fabricating highly stable and luminescent CsPbBr_(3)@PVDF-HFP/PS nanofibers by combining one-step electrospinning method with 1H,1H,2H,2H-perfluorodecyltrimethoxysi-lane(PFDTMS)-assisted post-treatment.The bright-emitting CsPbBr_(3) NCs can be effectively encapsulated within polymer nanofibers,which exhibit ultrafine diameter of only 88.1±2.8 nm and high photoluminescence quantum yield(PLQY)of 87.9%via rationally optimizing the electrospinning parameters,concentration of perovskite precursors and ligands.Most importantly,the superhydrophobic surface structures of nanofibers are formed by the hydrolysis and condensation of PFDTMS under moist environment.Benefiting from the double effective protection of polymer matrices and hydrophobic PFDTMS oligomers against moisture erosion,the CsPbBr_(3)@PVDF-HFP/PS nanofibers present an obviously improved stability,which can retain 90%initial PL intensity after water immersion for 70 days.Furthermore,an efficient white light-emitting diode with wide color gamut covering 117%of National Television System Committee(NTSC)standard is successfully fabricated based on the composite nanofiber membranes,suggesting their promising prospect for solid-state lighting and display applications.展开更多
Simultaneous pyridine biodegradation and nitrogen removal were successfully achieved in a sequencing batch reactor(SBR) based on aerobic granules. In a typical SBR cycle, nitritation occurred obviously after the maj...Simultaneous pyridine biodegradation and nitrogen removal were successfully achieved in a sequencing batch reactor(SBR) based on aerobic granules. In a typical SBR cycle, nitritation occurred obviously after the majority of pyridine was removed, while denitrification occurred at early stage of the cycle when oxygen consumption was aggravated. The effect of several key operation parameters, i.e., air flow rate, influent NH4~+-N concentration,influent p H and pyridine concentration, on nitritation, pyridine degradation and total nitrogen(TN) removal, was systematically investigated. The results indicated that high air flow rate had a positive effect on both pyridine degradation and nitritation but a negative impact of overhigh air flow rate. With the increase of NH4~+ dosage, both nitritation and TN removal could be severely inhibited. Slightly alkaline condition, i.e., pH 7.0–8.0, was beneficial for both pyridine degradation and nitritation. High pyridine dosage often resulted in the delay of both pyridine degradation and nitritation. Besides, extracellular polymeric substances production was affected by air flow rate, NH4~+ dosage, pyridine dosage and p H.In addition, high-throughput sequencing analysis demonstrated that Bdellovibrio and Paracoccus were the dominant species in the aerobic granulation system. Coexistence of pyridine degrader, nitrification related species, denitrification related species, polymeric substances producer and self-aggregation related species was also confirmed by highthroughput sequencing.展开更多
Alkaline residue (AR) was found to be an efficient adsorbent for phosphate removal from wastewater. The kinetic and equilibrium of phosphate removal were investigated to evaluate the performance of modified alkaline...Alkaline residue (AR) was found to be an efficient adsorbent for phosphate removal from wastewater. The kinetic and equilibrium of phosphate removal were investigated to evaluate the performance of modified alkaline residue. After treatment by NaOH (AR-NaOH), removal performance was significantly improved, while removal performance was almost completely lost after treatment by HCI (AR-HC1). The kinetics of the removal process by all adsorbents was well characterized by the pseudo second-order model. The Langmuir model exhibited the best correlation for AR-HC1, while AR was effectively described by Freundlich model. Both models were well fitted to AR-NaOH. The maximum adsorption capacities calculated from Langmuir equation were in following manner: AR-NaOH 〉 AR 〉 AR-HC1. Phosphate removal by alkaline residue was pH dependent process. Mechanisms for phosphate removal mainly involved adsorption and precipitation, varied with equilibrium pH of solution. For AR-HCI, the acid equilibrium pH (〈 6.0) was unfavorable for the formation of Ca-P precipitate, with adsorption as the key mechanism for phosphate removal. In contrast, for AR and AR- NaOH, precipitation was the dominant mechanism for phosphate removal, due to the incrase on pH (〉 8.0) after phosphate removal. The results of both XRD and SEM analysis confirmed CaHPOa.2H20 formation after phosphate removal by AR and AR-NaOH.展开更多
Dear Editor,Polymerase chain reaction(PCR)is a molecular diagnostic technique that has been widely used for diagnosing viral diseases.Nested PCR(N-PCR)is a variation on the standard PCR technique that involves two amp...Dear Editor,Polymerase chain reaction(PCR)is a molecular diagnostic technique that has been widely used for diagnosing viral diseases.Nested PCR(N-PCR)is a variation on the standard PCR technique that involves two amplification steps,yielding greater sensitivity and specificity.But there are two main disadvantages:the protocol is more complex than conventional PCR,and the risk of cross-contamination is relatively high.One-step nested PCR(OSN-PCR)enables conventional N-PCR to be performed as a closed reaction in a single tube that contains both outer and inner primers.This strategy makes OSN-PCR more rapid than N-PCR,lowers the probability of cross-contamination,and requires a smaller amount of reagents.展开更多
Platinum(Pt)is an efficient catalyst for hydrogen evolution reaction(HER)and oxygen reduction reaction(ORR),but the debate of the relevance between the Pt particle size and its electrocatalytic activity still exist.Th...Platinum(Pt)is an efficient catalyst for hydrogen evolution reaction(HER)and oxygen reduction reaction(ORR),but the debate of the relevance between the Pt particle size and its electrocatalytic activity still exist.The strong metal–support interaction(SMSI)between the metal and carrier causes the charge transfer and mass transport from the support to the metal.Herein,Pt species(0.5 wt.%)with various particle sizes supported on carbon nanotubes(CNTs)have been synthesized by a photo-reduction method.The^1.5 nm-sized Pt catalyst shows much higher HER performance than the counterparts in all pH solutions,and the mass activity of it is even 23–36 times that of Pt/C.While for ORR,the^3 nm-sized Pt catalyst exhibits the optimal performance,and the mass activity is 3 times and even 16 times that of Pt/C in acidic and alkaline media,respectively.The high HER and ORR performances of the^1.5 nm-and^3 nm-sized Pt catalysts benefit from the SMSI between Pt and the CNTs matrix and the higher ratio of face sites to edge sites,which is meaningful for the design of efficient electrocatalysts for renewable energy application.展开更多
Electromagnetic wave absorber is critical for reducing increasingly serious electromagnetic wave pollu-tion,however,the development of lightweight and broadband microwave absorbers remains a pressing challenge.We repo...Electromagnetic wave absorber is critical for reducing increasingly serious electromagnetic wave pollu-tion,however,the development of lightweight and broadband microwave absorbers remains a pressing challenge.We report here the rational design and synthesis of N-doped Ni@SiO_(2)/graphene composite con-structed from 3D interconnected porous graphene network and Ni@SiO_(2) core-shell architecture,which fulfills lightweight and broadband requirements while exhibiting highly efficient electromagnetic wave absorption.The porous graphene network,functioning both as lightweight support and dielectric medi-ator,was synthesized via NaCl template-assisted high-temperature calcination method.Upon uniformly attached with core-shell Ni@SiO_(2) on the surface,the resulting abundant heterogeneous interfaces con-structed by graphene-Ni and Ni-SiO_(2) strongly reinforce polarization loss.The presence of low dielectric SiO_(2) allows facile tuning of the complex permittivity of ternary composite by adjusting coating thick-ness to balance the attenuation ability and impedance matching.Moreover,further N-doping of graphene assists in the optimization of dielectric loss ability.Taking account of the advantages arising from the porous hierarchical architecture,multiple absorption centers and diverse interfaces,the lightweight com-posite exhibits an ultra-strong reflection loss(RL)value of-71.13 dB at 13.76 GHz with a thickness of 2.46 mm and broad effective absorption bandwidth of 7.04 GHz at a low filler content of 15 wt.%.More importantly,the effective absorption range covers 13.28 GHz(4.72-18 GHz)with the optimized thickness of 1.6-5 mm,representing 83%of the whole range of frequencies.Our results demonstrate that the novel 3D porous N-doped Ni@SiO_(2)/graphene network with hierarchical architecture is a promising candidate for high-performance electromagnetic wave absorption.展开更多
A combined zero valent iron (ZVI) and anaerobic-aerobic process was adopted for the treatment of 2,4-dinitrochlorobenzene (DNCB)- containing wastewater. The transformation pathway, reduction of acute toxicity and ...A combined zero valent iron (ZVI) and anaerobic-aerobic process was adopted for the treatment of 2,4-dinitrochlorobenzene (DNCB)- containing wastewater. The transformation pathway, reduction of acute toxicity and enhancement of biodegradability were investigated, After pretreatment by ZVI, DNCB in wastewater could be completely converted into 2,4-diaminochlorobenzene (DACB). The ratio of BODs/COD increased from 0.005±0.001 to 0.168±0.007, while EC50,48hr (V/V) increased from 0.65% to 5.20%, indicating the enhancement of biodegradability and reduction of acute toxicity with the pretreatment by ZVI. DACB was further dechlorinated to m-phenylenediamine during the anaerobic process using methanol as electron donor, with EC50' 48 hr increasing from 5.20% to 48.2%. After the subsequent anaerobic-aerobic process, m-phenylenediamine was degraded completely, with effluent COD of 67.5±10.8 mg/L. This effluent of the subsequent anaerobic-aerobic process was not toxic to zebrafish. The combined ZVI and anaerobic-aerobic process offers bright prospects for the treatment of chlorinated nitroaromatic compound-containing wastewater.展开更多
文摘[Objectives]To study the germplasm resources of excellent peach cultivars.[Methods]Five peach cultivars were introduced,in-cluding‘Jinxiu’peach,‘Jinxiang’peach,‘Chunxiao’peach,‘Hujingmilu’peach and‘018 nectarine’peach.Then,these five cultivars were used to study the biological characteristics of peach trees,namely,as phenology,fruit quality,heat resistance,cold resistance and other resistance.[Results]Five cultivars of peach plants grew fast and robust,among which‘018 nectarine’had very crisp fruit,‘Jinxiu’,‘Jinxiang’,‘Chunxiao’and‘Hujingmilu’had very sweet fruitꎻthe peach trees of these five cultivars have good water resistance,heat resist-ance and cold resistance.[Conclusions]The results of this study can not only provide a reference for the introduction of peach trees,but also provide a practical basis for the large-scale planting of peach trees.
基金Supported by the Science and Technology Project for Agriculture Development of Shanghai Agricultural Commission[Hu Nong Ke Tui Zi(2019)No.1-8]Science and Technology Innovation Action Plan of the Science and Technology Commission of Shanghai Municipality(19DZ1203501)。
文摘[Objectives]To explore the planting adaptability of vegetables in Shanghai.[Methods]In this paper,cowpea(Vigna unguiculate(L.)Walp.),cucumber(Cucumis sativus L.),eggplant(Solanum melongena L.)and potato(Solanum tuberosum L.)were selected as experimental materials and planted in the open air.The growth status,the occurrence of diseases and insect pests,and the taste evaluation of these four kinds of common vegetables were mainly studied.[Results]The results showed that the four kinds of common vegetables in Shanghai had strong growth,strong adaptability,less pests and diseases,and good taste.[Conclusions]The cowpea,cucumber,eggplant,and potato are suitable for planting in Shanghai.
文摘[Objectives]To study the adaptability of introduced pear.[Methods]Five pear varieties,"Aidang"pear,"Taiwan Zaomi"pear,"Cuiguan"pear,"Tianjin Yali"pear and"Zaosheng Xinshui"pear,were introduced.Then,using these five varieties,the phenology of pear trees,various characters of fruit,stress resistance(heat tolerance and cold tolerance)of varieties were studied.[Results]The plants of 5 varieties of pear trees grew fast and were robust;in late March,it went into the flowering period;"Aidang"pear fruit had a certain number of stone cells;"Taiwan Zaomi"pear had the highest sweetness;"Cuiguan"pear had the largest fruit;these five varieties of pear trees had good water resistance,heat resistance and cold resistance.[Conclusions]This study can provide a reference for the introduction of pear trees,and can also provide a practical basis for the large-scale planting of pear trees.
基金Supported by Science and Technology Agriculture Project of Shanghai Municipal Commission of Agriculture and Rural Affairs[Hu Nong Ke Tui Zi(2019)No.1-8]Science and Technology Innovation Action Plan of the Science and Technology Commission of Shanghai Municipality(19DZ1203501).
文摘[Objectives]To study the introduction performance of pomegranate(Punica granatum)varieties in Shanghai area.[Methods]In this experiment,five pomegranate varieties were introduced,namely‘American 002’pomegranate,‘Huohulu’pomegranate,‘Wanli No.1’pomegranate,‘Yicheng Hongpitian’pomegranate,and‘American Qingpisuan’pomegranate.Then,using these five varieties,various biological traits such as phenology and fruit quality of pomegranate,as well as stress resistance such as heat resistance and cold resistance were studied.[Results]Five varieties of pomegranates began to mature in succession in early September;the smallest single fruit weight was 90 g,and the largest was 110 g;the plants grew fast,the plants were strong,the flowers were single petal,and plants bore fruits which were ornamental and edible.In addition,the pomegranates of these five varieties had good water tolerance and heat resistance,and good cold resistance.[Conclusions]This study is intended to provide a certain reference for the introduction of pomegranate varieties,and also provide a practical basis for the large-scale planting of pomegranate.
基金the Science and Technology Project for Agriculture Development of Shanghai Agricultural Commission[Hunongketuizi(2019)No.1-8].
文摘[Objectives]In order to study the flower characteristics of mulberry and evaluate the resources of fruit mulberry.[Methods]Firstly,the resources of fruit mulberry were collected,and four varieties of fruit mulberry(‘Dashi’mulberry,‘Changguo’milk mulberry,‘agate’mulberry and‘Xiangjin’milk mulberry)were collected.Then,the flower characteristics,fruit quality,and adaptability of fruit mulberry were studied.[Results]Mulberry is a dioecious plant,and the inflorescences are lurocatkin.The male flowers will fall off automatically,while the female flowers will develop into fruit.The four varieties of fruit mulberry have good adaptability in Shanghai,and their fruits have their own characteristics.At the same time,in order to use the resources of fruit mulberry,mulberry fruit picking activities were carried out for many times.[Conclusions]This study provides a reference for the cultivation,collection,utilization and evaluation of mulberry.
文摘In this study, a poly(ether block amide) (Pebax 1657) composite membrane applied for COa capture was prepared by coating Pebax 1657 solution on polyacrylonitrile (PAN) ultrafiltration membrane. Ethanol/water mixture was used as the solvent of Pebax and the effects of ethanol/water mass ratios and Pebax concentration on the permeation properties of composite membrane were studied. To enhance the com- posite membrane permeance, the gutter layer, made from reactive amino silicone crosslinking with potydimethylsiloxane (PDMS), was de- signed. The influence of crosslinldng degree of the gutter layer on membrane performance was investigated. As a result, a Pebardamino- PDMS/PAN multilayer membrane with hexane resistance was developed, showing CO2 permeance of 350 GPU and CO2/N2 selectivity over 50. The blend of polyethylene glycol dimethyl ether (PEG-DME) with Pebax as coating material was studied to further improve the membrane performance. After being combined with PEG-DME additive, CO2 permeance of the final Pebax-PEG-DME/amino-PDMS/PAN composite membrane reached 400 GPU above with CO2/Na selectivity over 65.
文摘With the increase of axle load and the train speed, dynamic interaction of train-track system becomes so exacerbated that the deformation and dynamic response of subgrade are more aggravated. The differential settlement will be created in bridge-embankment transition section under such dynamic action, and an adverse effect on the train operation safety can be caused. Meanwhile, differential settlement will produce additional dynamic effect when high-speed trains go through the transition between bridge-embankment. Such dynamic action will aggravate the differential settlement and subgrade damage. This paper applies the methods of field test and finite-element to systematically study the dynamic response characteristics of subgrade in bridge-embankment transition section of heavy haul railway under dynamic load for the first time. This research is focused on the analysis of influence of the different axle load, train speed, filled soil modulus, etc.. At last, the dynamic response rules are systematically summarized.
基金the National Key R&D Program of China,2019YFD1001300 and 2019YFD1001305China Agriculture Research System of MOF and MARA,China.
文摘Fusarium wilt,a disease caused by Fusarium oxysporum f.sp batatas(Fob)is an important disease in sweet potato production.Using endophytic bacteria for biological control of sweet potato diseases is one of the important ways.A Bacillus subtilis with antagonistic effect on Fusarium wilt of sweet potato was isolated from soil by confrontation culture.According to the biological characteristics,16S rDNA sequence analysis,and physiological and biochemical analysis,the Bacillus subtilis HAAS01 was named.A pot experiment was conducted for the biological control experiment of strain HAAS01,and the endogenous hormone content,antioxidant enzyme activity,soluble protein content,and related gene expressions of sweet potato plants were detected.The results showed that the HAAS01 strain could promote the production of endogenous hormones and resist the infection of plant diseases together with defensive enzymes and upregulation of related gene expressions.In summary,Bacillus subtilis HAAS01 was effective in controlling Fusarium wilt of sweet potato and has potential for application and development.
文摘ZSM-5 molecular sieve is a kind of high silicon microporous crystalline material that possesses three-dimensional frameworks.It has two kinds of ten member ring channels including a set of straight channels and a set of sine channels.These two sets of channels are perpendicular and the orifices are oval.Silica glasses are widely used in optical instru-
文摘Contributed to the unique size-tunable properties,quantum dots have attracted great interest and been applied in some promising areas involving light emitting diodes,lasers,biomedicalimaging and sensors.However,quantum dots have a seriously intrinsic limitation,namely,low
基金supported by t he Shanghai Science&Tech-nology Committee(No.22ZR1403300)the Fundamental Research Funds for the Central Universities(No.2232020A-02)the Na-tional Natural Science Foundation of China(Nos.51871053 and 91963204).
文摘Developing highly efficient microwave absorbing materials(MAMs)to ameliorate the electromagnetic(EM)response and facilitate energy absorption is crucial in both the civil and military industries.Metal-organic framework(MOF)derived nanoporous carbon composites have emerged as advanced MAMs ow-ing to their rich porosity,tunable compositions,facile functionalization,and morphology diversity.To-gether with the flourishing development of composition-tuning strategy,the rational dimension design and elaborate control over the architectures have also evolved into an effective approach to regulating their EM properties.Herein,we provide a comprehensive review of the recent advances in using di-mension and morphology modulation to adjust the microwave attenuation capacities for MOF-derived carbon composites.The underlying design rules and unique advantages for the MAMs of various dimen-sions were discussed with the selection of representative work,providing general concepts and insight on how to efficiently tune the morphologies.Accordingly,the fundamental dimension-morphology-function relationship was also elucidated.Finally,the challenges and perspectives of dimension design and mor-phology control over MOF-derived MAMs were also presented.
基金This work was supported by the Natural Science Foundation of China(Nos.91963204,51962003,52073058 and 51871053).
文摘Carbon materials are important but find little application in bending components due to their unsatisfy-ing bending strength(300-500 MPa).To fabricate carbon composites of high bending strength is a tough task,even using carbon fibers(CFs)structures as reinforcements.Here we report lamellar carbon com-posites of ultra-high bending strength(>1.2 GPa)produced from CFs cloths coated with nano-diamond(ND)particles by spark plasma sintering(SPS).When NDs are sandwiched between CFs cloths,some ND particles penetrate into interstices between CFs.During the sintering,the ND particles are transformed into graphite onions;this transformation is associated with an active state of carbon atoms participating in the change.As a result,the carbon onions strongly bond the CFs together,helping consolidate the com-pacts into strong lamellar carbon composite bulks.The produced graphite onions from the NDs located at crossings of CFs tows form a robust mortise and tenon structure,which helps the bending strength of the lamellar composite from the compact of 40 wt.%NDs exceed 1.2 GPa.The as-prepared compos-ite possesses the highest specific bending strength of all current high temperature structural materials reported so far.This work may pave a new way for high performance carbon materials.
基金supported from the National Key Research and Development Program of China(Grant No.2021YFB3500504)the Innovation Program of Shanghai Municipal Education Commission(2017-01-07-00-03-E00025)+2 种基金the National Natural Science Foundation of China(Nos.52073058,52103359)Shanghai Sailing Program(Nos.20YF1400400,21YF1400600)the Fundamental Research Funds for the Central Universities(2232020G-07).
文摘All-inorganic CsPbX_(3)(X=Cl,Br,I)perovskite nanocrystals(NCs)are emerging as promising candidate materials for optoelectronic devices due to their splendid optical and electrical properties.However,the intrinsic instability greatly limits their practical application.Herein,a feasible strategy is proposed for fabricating highly stable and luminescent CsPbBr_(3)@PVDF-HFP/PS nanofibers by combining one-step electrospinning method with 1H,1H,2H,2H-perfluorodecyltrimethoxysi-lane(PFDTMS)-assisted post-treatment.The bright-emitting CsPbBr_(3) NCs can be effectively encapsulated within polymer nanofibers,which exhibit ultrafine diameter of only 88.1±2.8 nm and high photoluminescence quantum yield(PLQY)of 87.9%via rationally optimizing the electrospinning parameters,concentration of perovskite precursors and ligands.Most importantly,the superhydrophobic surface structures of nanofibers are formed by the hydrolysis and condensation of PFDTMS under moist environment.Benefiting from the double effective protection of polymer matrices and hydrophobic PFDTMS oligomers against moisture erosion,the CsPbBr_(3)@PVDF-HFP/PS nanofibers present an obviously improved stability,which can retain 90%initial PL intensity after water immersion for 70 days.Furthermore,an efficient white light-emitting diode with wide color gamut covering 117%of National Television System Committee(NTSC)standard is successfully fabricated based on the composite nanofiber membranes,suggesting their promising prospect for solid-state lighting and display applications.
基金supported by the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars (No. BK20170038)the Natural Science Foundation of Jiangsu Province (No. BK20151485)the National Natural Science Foundation of China (Nos. 51478225 and 51778294)
文摘Simultaneous pyridine biodegradation and nitrogen removal were successfully achieved in a sequencing batch reactor(SBR) based on aerobic granules. In a typical SBR cycle, nitritation occurred obviously after the majority of pyridine was removed, while denitrification occurred at early stage of the cycle when oxygen consumption was aggravated. The effect of several key operation parameters, i.e., air flow rate, influent NH4~+-N concentration,influent p H and pyridine concentration, on nitritation, pyridine degradation and total nitrogen(TN) removal, was systematically investigated. The results indicated that high air flow rate had a positive effect on both pyridine degradation and nitritation but a negative impact of overhigh air flow rate. With the increase of NH4~+ dosage, both nitritation and TN removal could be severely inhibited. Slightly alkaline condition, i.e., pH 7.0–8.0, was beneficial for both pyridine degradation and nitritation. High pyridine dosage often resulted in the delay of both pyridine degradation and nitritation. Besides, extracellular polymeric substances production was affected by air flow rate, NH4~+ dosage, pyridine dosage and p H.In addition, high-throughput sequencing analysis demonstrated that Bdellovibrio and Paracoccus were the dominant species in the aerobic granulation system. Coexistence of pyridine degrader, nitrification related species, denitrification related species, polymeric substances producer and self-aggregation related species was also confirmed by highthroughput sequencing.
基金supported by the Technological Support Plan Foundation of Jiangsu Province of China(No.BE2011834)
文摘Alkaline residue (AR) was found to be an efficient adsorbent for phosphate removal from wastewater. The kinetic and equilibrium of phosphate removal were investigated to evaluate the performance of modified alkaline residue. After treatment by NaOH (AR-NaOH), removal performance was significantly improved, while removal performance was almost completely lost after treatment by HCI (AR-HC1). The kinetics of the removal process by all adsorbents was well characterized by the pseudo second-order model. The Langmuir model exhibited the best correlation for AR-HC1, while AR was effectively described by Freundlich model. Both models were well fitted to AR-NaOH. The maximum adsorption capacities calculated from Langmuir equation were in following manner: AR-NaOH 〉 AR 〉 AR-HC1. Phosphate removal by alkaline residue was pH dependent process. Mechanisms for phosphate removal mainly involved adsorption and precipitation, varied with equilibrium pH of solution. For AR-HCI, the acid equilibrium pH (〈 6.0) was unfavorable for the formation of Ca-P precipitate, with adsorption as the key mechanism for phosphate removal. In contrast, for AR and AR- NaOH, precipitation was the dominant mechanism for phosphate removal, due to the incrase on pH (〉 8.0) after phosphate removal. The results of both XRD and SEM analysis confirmed CaHPOa.2H20 formation after phosphate removal by AR and AR-NaOH.
基金supported by the National Key Research and Development Plan (2016TFC1202700, 2016YFC1200900)Beijing Municipal Science & Technology Commission Project (D151100002115003)Guangzhou Municipal Science & Technology Commission project (2015B2150820)
文摘Dear Editor,Polymerase chain reaction(PCR)is a molecular diagnostic technique that has been widely used for diagnosing viral diseases.Nested PCR(N-PCR)is a variation on the standard PCR technique that involves two amplification steps,yielding greater sensitivity and specificity.But there are two main disadvantages:the protocol is more complex than conventional PCR,and the risk of cross-contamination is relatively high.One-step nested PCR(OSN-PCR)enables conventional N-PCR to be performed as a closed reaction in a single tube that contains both outer and inner primers.This strategy makes OSN-PCR more rapid than N-PCR,lowers the probability of cross-contamination,and requires a smaller amount of reagents.
基金support from the Natural Science Foundation of Shanghai(19ZR1479400)the State Key Laboratory for Modication of Chemical Fibers and Polymer Materials,Donghua University(KF1818)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)。
文摘Platinum(Pt)is an efficient catalyst for hydrogen evolution reaction(HER)and oxygen reduction reaction(ORR),but the debate of the relevance between the Pt particle size and its electrocatalytic activity still exist.The strong metal–support interaction(SMSI)between the metal and carrier causes the charge transfer and mass transport from the support to the metal.Herein,Pt species(0.5 wt.%)with various particle sizes supported on carbon nanotubes(CNTs)have been synthesized by a photo-reduction method.The^1.5 nm-sized Pt catalyst shows much higher HER performance than the counterparts in all pH solutions,and the mass activity of it is even 23–36 times that of Pt/C.While for ORR,the^3 nm-sized Pt catalyst exhibits the optimal performance,and the mass activity is 3 times and even 16 times that of Pt/C in acidic and alkaline media,respectively.The high HER and ORR performances of the^1.5 nm-and^3 nm-sized Pt catalysts benefit from the SMSI between Pt and the CNTs matrix and the higher ratio of face sites to edge sites,which is meaningful for the design of efficient electrocatalysts for renewable energy application.
基金supported by the National Natural Science Foundation of China (Nos.91963204 and 51871053)Shanghai Pujiang Program (No.19PJ1400200)the Fundamental Research Funds for the Central Universities (Nos.2232019G-07 and 2232020A-02)。
文摘Electromagnetic wave absorber is critical for reducing increasingly serious electromagnetic wave pollu-tion,however,the development of lightweight and broadband microwave absorbers remains a pressing challenge.We report here the rational design and synthesis of N-doped Ni@SiO_(2)/graphene composite con-structed from 3D interconnected porous graphene network and Ni@SiO_(2) core-shell architecture,which fulfills lightweight and broadband requirements while exhibiting highly efficient electromagnetic wave absorption.The porous graphene network,functioning both as lightweight support and dielectric medi-ator,was synthesized via NaCl template-assisted high-temperature calcination method.Upon uniformly attached with core-shell Ni@SiO_(2) on the surface,the resulting abundant heterogeneous interfaces con-structed by graphene-Ni and Ni-SiO_(2) strongly reinforce polarization loss.The presence of low dielectric SiO_(2) allows facile tuning of the complex permittivity of ternary composite by adjusting coating thick-ness to balance the attenuation ability and impedance matching.Moreover,further N-doping of graphene assists in the optimization of dielectric loss ability.Taking account of the advantages arising from the porous hierarchical architecture,multiple absorption centers and diverse interfaces,the lightweight com-posite exhibits an ultra-strong reflection loss(RL)value of-71.13 dB at 13.76 GHz with a thickness of 2.46 mm and broad effective absorption bandwidth of 7.04 GHz at a low filler content of 15 wt.%.More importantly,the effective absorption range covers 13.28 GHz(4.72-18 GHz)with the optimized thickness of 1.6-5 mm,representing 83%of the whole range of frequencies.Our results demonstrate that the novel 3D porous N-doped Ni@SiO_(2)/graphene network with hierarchical architecture is a promising candidate for high-performance electromagnetic wave absorption.
基金financed by the Innovation Program of Foundation Productthe National Natural Science Foundation of China (No.50978136, 51208258)+4 种基金the Major Project of Water Pollution Control and Management Technology of China (No.2012ZX07101-003-001)the Natural Science Foundation of Jiangsu Province (No.BK2011717)the China Post doctoral Science Foundation(No.2011M500927)the Jiangsu Planned Projects for Postdoctoral Research Funds (No.1101014C)the Fundamental Research Funds for Central Universities (No.NUST2011ZDJH20, NUST2011PYXM05)
文摘A combined zero valent iron (ZVI) and anaerobic-aerobic process was adopted for the treatment of 2,4-dinitrochlorobenzene (DNCB)- containing wastewater. The transformation pathway, reduction of acute toxicity and enhancement of biodegradability were investigated, After pretreatment by ZVI, DNCB in wastewater could be completely converted into 2,4-diaminochlorobenzene (DACB). The ratio of BODs/COD increased from 0.005±0.001 to 0.168±0.007, while EC50,48hr (V/V) increased from 0.65% to 5.20%, indicating the enhancement of biodegradability and reduction of acute toxicity with the pretreatment by ZVI. DACB was further dechlorinated to m-phenylenediamine during the anaerobic process using methanol as electron donor, with EC50' 48 hr increasing from 5.20% to 48.2%. After the subsequent anaerobic-aerobic process, m-phenylenediamine was degraded completely, with effluent COD of 67.5±10.8 mg/L. This effluent of the subsequent anaerobic-aerobic process was not toxic to zebrafish. The combined ZVI and anaerobic-aerobic process offers bright prospects for the treatment of chlorinated nitroaromatic compound-containing wastewater.