期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Heat transfer characteristics of thin power-law liquid films over horizontal stretching sheet with internal heating and variable thermal coefficient
1
作者 Yanhai LIN Liancun ZHENG lianxi ma 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第12期1587-1596,共10页
The effect of internal heating source on the film momentum and thermal transport characteristic of thin finite power-law liquids over an accelerating unsteady horizontal stretched interface is studied. Unlike most cla... The effect of internal heating source on the film momentum and thermal transport characteristic of thin finite power-law liquids over an accelerating unsteady horizontal stretched interface is studied. Unlike most classical works in this field, a general surface temperature distribution of the liquid film and the generalized Fourier's law for varying thermal conductivity are taken into consideration. Appropriate similarity transformations are used to convert the strongly nonlinear governing partial differential equations (PDEs) into a boundary value problem with a group of two-point ordinary differential equations (ODEs). The correspondence between the liquid film thickness and the unsteadiness parameter is derived with the BVP4C program in MATLAB. Numerical solutions to the self-similarity ODEs are obtained using the shooting technique combined with a Runge-Kutta iteration program and Newton's scheme. The effects of the involved physical parameters on the fluid's horizontal velocity and temperature distribution are presented and discussed. 展开更多
关键词 non-Newtonian fluid nonlinear equation thin film heat transfer internalheating stretching sheet thermal conductivity numerical solution
下载PDF
Mechanism from particle compaction to fluidization of liquid–solid two-phase flow
2
作者 Yue Zhang Jinchun Song +2 位作者 lianxi ma Liancun Zheng Minghe Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期373-377,共5页
A new model of particle yield stress including cohesive strength is proposed,which considers the friction and cohesive strength between particles.A calculation method for the fluidization process of liquid–solid two-... A new model of particle yield stress including cohesive strength is proposed,which considers the friction and cohesive strength between particles.A calculation method for the fluidization process of liquid–solid two-phase flow in compact packing state is given,and the simulation and experimental studies of fluidization process are carried out by taking the sand–water two-phase flow in the jet dredging system as an example,and the calculation method is verified. 展开更多
关键词 liquid–solid flow two-phase flow cohesive strength yield stress
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部