期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
DAUNet: Detail-Aware U-Shaped Network for 2D Human Pose Estimation
1
作者 Xi Li Yuxin Li +2 位作者 Zhenhua Xiao Zhenghua Huang lianying zou 《Computers, Materials & Continua》 SCIE EI 2024年第11期3325-3349,共25页
Human pose estimation is a critical research area in the field of computer vision,playing a significant role in applications such as human-computer interaction,behavior analysis,and action recognition.In this paper,we... Human pose estimation is a critical research area in the field of computer vision,playing a significant role in applications such as human-computer interaction,behavior analysis,and action recognition.In this paper,we propose a U-shaped keypoint detection network(DAUNet)based on an improved ResNet subsampling structure and spatial grouping mechanism.This network addresses key challenges in traditional methods,such as information loss,large network redundancy,and insufficient sensitivity to low-resolution features.DAUNet is composed of three main components.First,we introduce an improved BottleNeck block that employs partial convolution and strip pooling to reduce computational load and mitigate feature loss.Second,after upsampling,the network eliminates redundant features,improving the overall efficiency.Finally,a lightweight spatial grouping attention mechanism is applied to enhance low-resolution semantic features within the feature map,allowing for better restoration of the original image size and higher accuracy.Experimental results demonstrate that DAUNet achieves superior accuracy compared to most existing keypoint detection models,with a mean PCKh@0.5 score of 91.6%on the MPII dataset and an AP of 76.1%on the COCO dataset.Moreover,real-world experiments further validate the robustness and generalizability of DAUNet for detecting human bodies in unknown environments,highlighting its potential for broader applications. 展开更多
关键词 Human pose estimation keypoint detection U-shaped network architecture spatial grouping mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部