旨在分析母猪的出生年份、出生季节、初生重、开测日龄等固定效应对长白、大白猪主要生长性状的影响,并对目标生长性状进行遗传参数估计(遗传力、遗传方差、表型相关和遗传相关),为猪的遗传改良提供基本依据。本试验利用GLM模型分析试...旨在分析母猪的出生年份、出生季节、初生重、开测日龄等固定效应对长白、大白猪主要生长性状的影响,并对目标生长性状进行遗传参数估计(遗传力、遗传方差、表型相关和遗传相关),为猪的遗传改良提供基本依据。本试验利用GLM模型分析试验猪群(398头长白猪和1176头大白猪)的固定效应对猪生长性状的影响,并采用多性状动物模型对目标性状进行遗传参数估计。目标生长性状包括达100 kg体重日龄(age to 100 kg,AGE)、达100 kg背膘厚(backfat to 100 kg,BF)、100 kg平均日增重(average daily gain to 100 kg,ADG)。研究表明,在大白和长白猪中,猪的出生年、出生季、初生重以及开测日龄对生长性状均具有极显著的影响(P<0.001);长白猪的AGE、ADG和BF的遗传力分别为0.321、0.327和0.324,大白猪对应性状的遗传力分别为0.454、0.469和0.408;长白猪的ADG和AGE之间的遗传相关、表型相关分别为-0.990、-0.995,大白猪的ADG和AGE之间的遗传相关、表型相关分别为-0.993、-0.998,均呈现较强的负相关。长白、大白猪的生长性状(AGE、ADG、BF)均属于中等遗传力性状,其出生年份、出生季节、初生重和开测日龄对猪的生长性状影响较大。在遗传参数估计分析时,提高样本数量并提升表型数据质量,可以增加遗传参数估计的可靠性。本研究中的生长性状遗传参数估计结果较为可靠,可为后续的遗传改良提供参考。展开更多
Based on adaptive dynamic programming(ADP),the fixed-point tracking control problem is solved by a value iteration(VI) algorithm. First, a class of discrete-time(DT)nonlinear system with disturbance is considered. Sec...Based on adaptive dynamic programming(ADP),the fixed-point tracking control problem is solved by a value iteration(VI) algorithm. First, a class of discrete-time(DT)nonlinear system with disturbance is considered. Second, the convergence of a VI algorithm is given. It is proven that the iterative cost function precisely converges to the optimal value,and the control input and disturbance input also converges to the optimal values. Third, a novel analysis pertaining to the range of the discount factor is presented, where the cost function serves as a Lyapunov function. Finally, neural networks(NNs) are employed to approximate the cost function, the control law, and the disturbance law. Simulation examples are given to illustrate the effective performance of the proposed method.展开更多
文摘旨在分析母猪的出生年份、出生季节、初生重、开测日龄等固定效应对长白、大白猪主要生长性状的影响,并对目标生长性状进行遗传参数估计(遗传力、遗传方差、表型相关和遗传相关),为猪的遗传改良提供基本依据。本试验利用GLM模型分析试验猪群(398头长白猪和1176头大白猪)的固定效应对猪生长性状的影响,并采用多性状动物模型对目标性状进行遗传参数估计。目标生长性状包括达100 kg体重日龄(age to 100 kg,AGE)、达100 kg背膘厚(backfat to 100 kg,BF)、100 kg平均日增重(average daily gain to 100 kg,ADG)。研究表明,在大白和长白猪中,猪的出生年、出生季、初生重以及开测日龄对生长性状均具有极显著的影响(P<0.001);长白猪的AGE、ADG和BF的遗传力分别为0.321、0.327和0.324,大白猪对应性状的遗传力分别为0.454、0.469和0.408;长白猪的ADG和AGE之间的遗传相关、表型相关分别为-0.990、-0.995,大白猪的ADG和AGE之间的遗传相关、表型相关分别为-0.993、-0.998,均呈现较强的负相关。长白、大白猪的生长性状(AGE、ADG、BF)均属于中等遗传力性状,其出生年份、出生季节、初生重和开测日龄对猪的生长性状影响较大。在遗传参数估计分析时,提高样本数量并提升表型数据质量,可以增加遗传参数估计的可靠性。本研究中的生长性状遗传参数估计结果较为可靠,可为后续的遗传改良提供参考。
基金supported in part by the National Natural Science Foundation of China(61873300,61722312)in part by the Fundamental Research Funds for the Central Universities(FRF-GF-17-B45)
文摘Based on adaptive dynamic programming(ADP),the fixed-point tracking control problem is solved by a value iteration(VI) algorithm. First, a class of discrete-time(DT)nonlinear system with disturbance is considered. Second, the convergence of a VI algorithm is given. It is proven that the iterative cost function precisely converges to the optimal value,and the control input and disturbance input also converges to the optimal values. Third, a novel analysis pertaining to the range of the discount factor is presented, where the cost function serves as a Lyapunov function. Finally, neural networks(NNs) are employed to approximate the cost function, the control law, and the disturbance law. Simulation examples are given to illustrate the effective performance of the proposed method.