The unique crystal structure and multiple redox couples of iron titanate(Fe_(2)TiO_(5)) provide it a high theoretical capacity and good cycling stability when used as an electrode. In this study, the electrospinning m...The unique crystal structure and multiple redox couples of iron titanate(Fe_(2)TiO_(5)) provide it a high theoretical capacity and good cycling stability when used as an electrode. In this study, the electrospinning method is employed to synthesize one-dimensional(1 D) Fe_(2)TiO_(5) nanochains. The as-prepared Fe_(2)TiO_(5) nanochains exhibited superior specific capacity(500 mAh·g^(-1) at 0.10 A·g^(-1)),excellent rate performance(180 mAh·g^(-1) at 5.00 A·g^(-1)),and good cycling stability(retaining 100% of the initial specific capacity at a current density of 1.00 A·g^(-1) after1000 cycles). The as-assembled Fe_(2)TiO_(5)/SCCB lithiumion capacitor(LIC) also delivered a competitive energy density(137.8 Wh·kg^(-1))andpowerdensity(11,250 W·kg^(-1)). This study proves that the as-fabricated1 D Fe_(2)TiO_(5) nanochains are promising anode materials for high-performance LICs.展开更多
基金financially supported by the Natural Science Foundation of Jiangsu Province(No.BK20170549)the National Natural Science Foundation of China(No.21706103)+1 种基金the China Postdoctoral Science Foundation(No.2019T120393)the Postdoctoral Science Foundation of Jiangsu Province(No.2019K295)。
文摘The unique crystal structure and multiple redox couples of iron titanate(Fe_(2)TiO_(5)) provide it a high theoretical capacity and good cycling stability when used as an electrode. In this study, the electrospinning method is employed to synthesize one-dimensional(1 D) Fe_(2)TiO_(5) nanochains. The as-prepared Fe_(2)TiO_(5) nanochains exhibited superior specific capacity(500 mAh·g^(-1) at 0.10 A·g^(-1)),excellent rate performance(180 mAh·g^(-1) at 5.00 A·g^(-1)),and good cycling stability(retaining 100% of the initial specific capacity at a current density of 1.00 A·g^(-1) after1000 cycles). The as-assembled Fe_(2)TiO_(5)/SCCB lithiumion capacitor(LIC) also delivered a competitive energy density(137.8 Wh·kg^(-1))andpowerdensity(11,250 W·kg^(-1)). This study proves that the as-fabricated1 D Fe_(2)TiO_(5) nanochains are promising anode materials for high-performance LICs.