期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Revealing the solid electrolyte interface on calcium metal anodes
1
作者 Yumeng Zhao Aoxuan Wang +2 位作者 libin ren Xingjiang Liu Jiayan Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期174-190,I0005,共18页
Owing to its low potential, crustal abundances and environmental friendliness, calcium metal anode(CMA) is emerging as a powerful contender in post-lithium era. However, the passivation of CMA fatally hinders its deve... Owing to its low potential, crustal abundances and environmental friendliness, calcium metal anode(CMA) is emerging as a powerful contender in post-lithium era. However, the passivation of CMA fatally hinders its development. Recently, several feasible electrolytes have been developed. Nevertheless, as a pivotal part, the solid electrolyte interface(SEI) formed on CMA has not been paid enough attention to. In this review, based on the passivation mechanism of CMA, the favorable composition of SEI is emphasized with the corresponding electrolytes. It is considered that boron-containing and organic–inorganic hybrid SEI might be preferred. By comparing electrolytes and SEI on CMA with lithium and magnesium metal anodes, the root causes of CMA passivation are further elaborated, enlightening rational design rules of suitable SEI. Furthermore, some noteworthy details when assembling secondary calcium metal batteries(CMBs) are put forward. It is expected that deeper understanding of SEI on CMA will promote the development of CMBs. 展开更多
关键词 Solid electrolyte interface Calcium metal anode Reversible deposition Passivation mechanism
下载PDF
Processable Potassium Metal Anode for Stable Batteries
2
作者 Zhenghang Wei Aoxuan Wang +7 位作者 Xuze Guan Guojie Li Zhiwei Yang Chengde Huang Jing Zhang libin ren Jiayan Luo Xingjiang Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第4期1278-1284,共7页
The future of high-energy density electrochemical energy storage systems relies on the advancement of rechargeable batteries that utilize reactive metals as anodes.In the alkaline metal,secondary battery systems becau... The future of high-energy density electrochemical energy storage systems relies on the advancement of rechargeable batteries that utilize reactive metals as anodes.In the alkaline metal,secondary battery systems because of abundant resource,high capacity and low redox potential,potassium(K)metal secondary battery(KMB)is expected to replace the existing lithiumion battery as a versatile platform for high-energy density,cost-effective energy storage devices.However,the difficulty in processing metal K results in nonstandard electrodes and hinders the development of KMBs.Furthermore,the mobility of the K metal anode due to its unique lowmelting point character at elevated temperatures in practical conditions leads to severe instability and risks in chemical/electrochemical processes.Herein,we fabricate a processable and moldable composite K metal anode by encapsulating K into reduced graphene oxide(rGO).The composite electrode can be engineered into various shapes discretionarily with precise sizes and stabilize the K metal anode at relatively high temperatures.Remarkably,the composite anode exhibits excellent cycling performance at high current density(8 mA cm^(-2)) with dendrite-free morphology.Paired with a Prussian blue cathode,the rGO-K composite anode shows much improved electrochemical performance and extended lifetime. 展开更多
关键词 K metal anode K metal battery processibility reduced graphene oxide STABILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部