期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Metallogenic controls on the granite-related W–Sn deposits in the Hunan–Jiangxi region, China: evidence from zircon trace element geochemistry 被引量:2
1
作者 Yuannan Feng Tingguang Lan +2 位作者 lichuan pan Tingting Liu Shaohua Dong 《Acta Geochimica》 EI CAS CSCD 2019年第4期530-540,共11页
The Nanling Range in South China is well known for its rich granite-related W–Sn deposits.To elucidate the controls of different granite-related W–Sn metallogenesis in the region,we chose five representative orerela... The Nanling Range in South China is well known for its rich granite-related W–Sn deposits.To elucidate the controls of different granite-related W–Sn metallogenesis in the region,we chose five representative orerelated granites(Yanbei,Mikengshan,Tieshanlong,Qianlishan,and Yaogangxian intrusions)in the Hunan–Jiangxi region,and studied their magmatic zircon ages and trace element geochemistry.Our new zircon data showed the differences in ages,temperatures and oxygen fugacity of the ore-forming magmas.Zircon U–Pb ages of the Yanbei and Mikengshan intrusions are characterized by 142.4±2.4 and 143.0±2.3 Ma,respectively,whereas the Tieshanlong and Qianlishan intrusions are 159.5±2.3and 153.2±3.3 Ma,respectively.The Sn-related intrusions were younger than the W-related intrusions.The Tiin-zircon thermometry showed that there was no systematic difference between the Sn-related Yanbei(680–744℃)and Mikengshan(697–763℃)intrusions and the W-related Tieshanlong(730–800℃),Qianlishan(690–755℃)and Yaogangxian(686–751℃)intrusions.However,the zircon Ce^4+/Ce^3+ratios of the Yanbei(averaged at 18.3)and Mikengshan(averaged at 18.8)intrusions are lower than those of the Tieshanlong(averaged at 36.9),Qianlishan(averaged at 38.4)and Yaogangxian(averaged at 37)intrusions,indicating that the Sn-related granitic magmas might have lower oxygen fugacities than those of the W-related.This can be explained by that,in more reduced magmas,Sn is more soluble than W and thus is more enriched in the residual melt to form Sn mineralization.The difference in source materials between the Sn-related and the W-related granites seems to have contributed to the different redox conditions of the melts. 展开更多
关键词 W–Sn DEPOSITS South China ZIRCON trace element chemistry Ti-in-zircon thermometry Oxygen FUGACITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部