期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Atomic origin of the traps in memristive interface
1
作者 Ye Tian lida pan +1 位作者 Chuan Fei Guo Qian Liu 《Nano Research》 SCIE EI CAS CSCD 2017年第6期1924-1931,共8页
In recent years, trap-related interfacial transport phenomena have received great attention owing to their potential applications in resistive switching devices and photo detectors. Not long ago, one new type of memri... In recent years, trap-related interfacial transport phenomena have received great attention owing to their potential applications in resistive switching devices and photo detectors. Not long ago, one new type of memristive interface that is composed of F-doped SnO2 and Bi2S3 nano-network layers has demonstrated a bivariate-continuous-tunable resistance with a swift response comparable to the one in neuron synapses and with a brain-like memorizing capability. However, the resistive mechanism is still not clearly understood because of lack of evidence, and the limited improvement in the development of the interfacial device. By combining I-V characterization, electron energy-loss spectroscopy, and first- principle calculation, we studied in detail the macro/micro features of the memristive interface using experimental and theoretical methods, and confirmed that its atomic origin is attributed to the traps induced by O-doping. This implies that impurity-doping might be an effective strategy for improving switching features and building new interfacial memristors. 展开更多
关键词 memristance INTERFACE trap state first principle calculation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部