With the improved moving least-squares (IMLS) approximation, an orthogonal function system with a weight function is used as the basis function. The combination of the element-free Galerkin (EFG) method and the IMLS a...With the improved moving least-squares (IMLS) approximation, an orthogonal function system with a weight function is used as the basis function. The combination of the element-free Galerkin (EFG) method and the IMLS approximation leads to the development of the improved element-free Galerkin (IEFG) method. In this paper, the IEFG method is applied to study the partial differential equations that control the heat flow in three-dimensional space. With the IEFG technique, the Galerkin weak form is employed to develop the discretized system equations, and the penalty method is applied to impose the essential boundary conditions. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the transient heat conduction equations and the boundary and initial conditions are time dependent, the scaling parameter, number of nodes and time step length are considered in a convergence study.展开更多
基金the National Natural Science Foundation of China (Grant No. 11171208)Shanghai Leading Academic Discipline Project (Grant No. S30106)
文摘With the improved moving least-squares (IMLS) approximation, an orthogonal function system with a weight function is used as the basis function. The combination of the element-free Galerkin (EFG) method and the IMLS approximation leads to the development of the improved element-free Galerkin (IEFG) method. In this paper, the IEFG method is applied to study the partial differential equations that control the heat flow in three-dimensional space. With the IEFG technique, the Galerkin weak form is employed to develop the discretized system equations, and the penalty method is applied to impose the essential boundary conditions. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the transient heat conduction equations and the boundary and initial conditions are time dependent, the scaling parameter, number of nodes and time step length are considered in a convergence study.