We investigate the behavior of edge modes in the presence of different edge terminations and long-range(LR)hopping.Here,we mainly focus on such model crystals with two different types of structures(type I:“…-P-Q-P-Q...We investigate the behavior of edge modes in the presence of different edge terminations and long-range(LR)hopping.Here,we mainly focus on such model crystals with two different types of structures(type I:“…-P-Q-P-Q-…”and type II:“…=P-Q=P-Q=…”),where P and Q represent crystal lines(CLs),while the symbols“-”and“=”denote the distance between the nearest neighbor(NN)CLs.Based on the lattice model Hamiltonian with LR hopping,the existence of edge modes is determined analytically by using the transfer matrix method(TMM)when different edge terminals are taken into consideration.Our findings are consistent with the numerical results obtained by the exact diagonalization method.We also notice that edge modes can exhibit different behaviors under different edge terminals.Our result is helpful in solving novel edge modes in honeycomb crystalline graphene and transition metal dichalcogenides with different edge terminals.展开更多
We analyze the behavior of edge states in long-range(LR)interacting systems.In terms of lattice model Hamiltonian with the LR coupling,we determine analytically the condition of existence of edge states within the tra...We analyze the behavior of edge states in long-range(LR)interacting systems.In terms of lattice model Hamiltonian with the LR coupling,we determine analytically the condition of existence of edge states within the transfer matrix method(TMM).The expressions we obtain are general and hold for any choice of the LR hopping.The reason why edge states can appear is the transfer matrix in the bulk different from that in the boundary layers.Our predictions are in good agreement with numerical results by exact diagonalization.Our result is helpful in solving novel edge states in oneand two-dimensional(2D)superconductors with LR hopping and pairing.展开更多
Traditional antifouling agents usually have a certain toxic effect on marine environments and non-target organisms.In this study,Dictyophora indusiata polysaccharide(DIP)was applied as a natural antifouling surface mo...Traditional antifouling agents usually have a certain toxic effect on marine environments and non-target organisms.In this study,Dictyophora indusiata polysaccharide(DIP)was applied as a natural antifouling surface modifier to prepare the surface coating for marine antifouling.Three DIP coatings were prepared:D.indusiata spore polysaccharide(DISP),D.indusiata volva polysaccharide(DIVP),and D.indusiata embryonic body polysaccharide(DIEP).The antifouling,tribological,and anticorrosion behavior of the coatings were examined.Results revealed that the three kinds of DIP coatings had excellent antifouling properties,which could effectively prevent the adhesion of Chlorella and the attachment of water-based and oily stains on the surface.Additionally,the coatings showed great mechanical stability and could maintain an extremely low coefficient of friction(COF<0.05)after continuous wear.The drag reduction rate of the coated surfaces reached 5%,showing a powerful lubrication performance.Furthermore,the DIP coatings presented an outstanding corrosion resistance,where the equivalent circuit impedances were 4-9 orders of magnitude higher than the control groups.This research showed a promising prospect of surface coating fabrication with DIP for marine devices to achieve the purpose of antifouling and drag reduction.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11847061)Domestic Visiting Program for Young and Middle-aged Teachers in Shanghai Universities.
文摘We investigate the behavior of edge modes in the presence of different edge terminations and long-range(LR)hopping.Here,we mainly focus on such model crystals with two different types of structures(type I:“…-P-Q-P-Q-…”and type II:“…=P-Q=P-Q=…”),where P and Q represent crystal lines(CLs),while the symbols“-”and“=”denote the distance between the nearest neighbor(NN)CLs.Based on the lattice model Hamiltonian with LR hopping,the existence of edge modes is determined analytically by using the transfer matrix method(TMM)when different edge terminals are taken into consideration.Our findings are consistent with the numerical results obtained by the exact diagonalization method.We also notice that edge modes can exhibit different behaviors under different edge terminals.Our result is helpful in solving novel edge modes in honeycomb crystalline graphene and transition metal dichalcogenides with different edge terminals.
基金supported by the National Natural Science Foundation of China(Grant No.11847061)the Startup Program of Shanghai University of Engineering Science.
文摘We analyze the behavior of edge states in long-range(LR)interacting systems.In terms of lattice model Hamiltonian with the LR coupling,we determine analytically the condition of existence of edge states within the transfer matrix method(TMM).The expressions we obtain are general and hold for any choice of the LR hopping.The reason why edge states can appear is the transfer matrix in the bulk different from that in the boundary layers.Our predictions are in good agreement with numerical results by exact diagonalization.Our result is helpful in solving novel edge states in oneand two-dimensional(2D)superconductors with LR hopping and pairing.
基金National Natural Science Foundation of China(52375298,51975458,and 51905370)support from the China Scholarship Council,China Postdoctoral Science Foundation funded project(2020M673377 and 2020T130510)+1 种基金Key R&D program of Shaanxi Province(2022SF-069)the Natural Science Fund of Shaanxi Province(2020JM-010).
文摘Traditional antifouling agents usually have a certain toxic effect on marine environments and non-target organisms.In this study,Dictyophora indusiata polysaccharide(DIP)was applied as a natural antifouling surface modifier to prepare the surface coating for marine antifouling.Three DIP coatings were prepared:D.indusiata spore polysaccharide(DISP),D.indusiata volva polysaccharide(DIVP),and D.indusiata embryonic body polysaccharide(DIEP).The antifouling,tribological,and anticorrosion behavior of the coatings were examined.Results revealed that the three kinds of DIP coatings had excellent antifouling properties,which could effectively prevent the adhesion of Chlorella and the attachment of water-based and oily stains on the surface.Additionally,the coatings showed great mechanical stability and could maintain an extremely low coefficient of friction(COF<0.05)after continuous wear.The drag reduction rate of the coated surfaces reached 5%,showing a powerful lubrication performance.Furthermore,the DIP coatings presented an outstanding corrosion resistance,where the equivalent circuit impedances were 4-9 orders of magnitude higher than the control groups.This research showed a promising prospect of surface coating fabrication with DIP for marine devices to achieve the purpose of antifouling and drag reduction.