Ultrasound-assisted synthesis of Mn/Co-MOF nanomaterial was used to capture uranium from aqueous solutions. Tests of Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transformed infr...Ultrasound-assisted synthesis of Mn/Co-MOF nanomaterial was used to capture uranium from aqueous solutions. Tests of Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transformed infrared spectra (FT-IR), Zeta potential analysis, thermogravimetric analysis (TGA), and X-ray diffraction (XRD) suggest that cobalt ions were replaced partially by manganese ions to generate MOF during the synthesis process and form manganous oxide particles loaded on the surface of Mn/Co-MOF. The optimal immobilization conditions of U(VI) were systematically studied by solution pH, kinetic, contact time and preparatory uranium concentration. XPS spectroscopy analysis indicated that the chelation of imidazole ring to uranium and Mn3O4 possibly played a certain role in the adsorption process. The results indicate that the adsorption isotherms of the Mn/Co-MOF for uranium suit Langmuir isotherm model (maximum adsorption capacity were 763.36 mg/g). Furthermore, the adsorption kinetics of Mn/Co-MOF match comfortably with the pseudo-second-order kinetic model.展开更多
基金supported by the National Natural Science Foundation of China(grant No.21866005)Jiangxi Key Plan of Research and Development(grant No.20192BBH80011).
文摘Ultrasound-assisted synthesis of Mn/Co-MOF nanomaterial was used to capture uranium from aqueous solutions. Tests of Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transformed infrared spectra (FT-IR), Zeta potential analysis, thermogravimetric analysis (TGA), and X-ray diffraction (XRD) suggest that cobalt ions were replaced partially by manganese ions to generate MOF during the synthesis process and form manganous oxide particles loaded on the surface of Mn/Co-MOF. The optimal immobilization conditions of U(VI) were systematically studied by solution pH, kinetic, contact time and preparatory uranium concentration. XPS spectroscopy analysis indicated that the chelation of imidazole ring to uranium and Mn3O4 possibly played a certain role in the adsorption process. The results indicate that the adsorption isotherms of the Mn/Co-MOF for uranium suit Langmuir isotherm model (maximum adsorption capacity were 763.36 mg/g). Furthermore, the adsorption kinetics of Mn/Co-MOF match comfortably with the pseudo-second-order kinetic model.