期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High Fe‑Loading Single‑Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy
1
作者 Si Chen Fang Huang +5 位作者 lijie mao Zhimin Zhang Han Lin Qixin Yan Xiangyu Lu Jianlin Shi 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期187-203,共17页
The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs ... The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections. 展开更多
关键词 Nanocatalytic medicine Single-atom catalysts Reactive oxygen species(ROS) High metal loading Oxidase catalysis
下载PDF
Synergy effects of Asperosaponin Ⅵ and bioactive factor BMP-2 on osteogenesis and anti-osteoclastogenesis 被引量:4
2
作者 Fangping Chen Qing Liang +4 位作者 lijie mao Yanrong Yin b Lixin Zhang Cuidi Li Changsheng Liu 《Bioactive Materials》 SCIE 2022年第4期335-344,共10页
Osteoporosis is a reduction in skeletal mass due to the decrease of osteogenic ability and the activation of the osteoclastic function.Inhibiting bone resorption and accelerating the new bone formation is a promising ... Osteoporosis is a reduction in skeletal mass due to the decrease of osteogenic ability and the activation of the osteoclastic function.Inhibiting bone resorption and accelerating the new bone formation is a promising strategy to repair the bone defect of osteoporosis.In this study,we first systematically investigated the roles of Chinese medicine Asperosaponin Ⅵ(ASP Ⅵ)on osteogenic mineralization of BMSCs and osteoclastogenesis of BMMs,and then explored the synergistic effect of ASP Ⅵ and BS(BMP-2 immobilized in 2-N,6-O-sulfated chitosan)on bone formation.The result showed that ASP Ⅵ with the concentration lower than 10^(-4) M contributed to the expression of osteogenic gene and inhibited osteoclastic genes RANKL of BMSCs.Simultaneously,ASP Ⅵ significantly reduced the differentiation of mononuclear osteoclasts in the process of osteoclast formation induced by M-CSF and RANKL.Furthermore,by stimulating the SMADs,TGF-β1,VEGFA,and OPG/RANKL signaling pathways,ASBS(ASP Ⅵ and BS)substantially enhanced osteogenesis,greatly promoted angiogenesis,and suppressed osteoclastogenesis.The findings provide a new perspective on osteoporosis care and prevention. 展开更多
关键词 AsperosaponinⅥ RHBMP-2 OSTEOPOROSIS OSTEOGENESIS OSTEOCLASTOGENESIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部