As an important contributor to the habitability of our planet, the oxygen cycle is interconnected with the emergence and evolution of complex life and is also the basis to establish Earth system science. Investigating...As an important contributor to the habitability of our planet, the oxygen cycle is interconnected with the emergence and evolution of complex life and is also the basis to establish Earth system science. Investigating the global oxygen cycle provides valuable information on the evolution of the Earth system, the habitability of our planet in the geologic past, and the future of human life. Numerous investigations have expanded our knowledge of the oxygen cycle in the fields of geology,geochemistry, geobiology, and atmospheric science. However, these studies were conducted separately, which has led to onesided understandings of this critical scientific issue and an incomplete synthesis of the interactions between the different spheres of the Earth system. This review presents a five-sphere coupled model of the Earth system and clarifies the core position of the oxygen cycle in Earth system science. Based on previous research, this review comprehensively summarizes the evolution of the oxygen cycle in geological time, with a special focus on the Great Oxidation Event(GOE) and the mass extinctions, as well as the possible connections between the oxygen content and biological evolution. The possible links between the oxygen cycle and biodiversity in geologic history have profound implications for exploring the habitability of Earth in history and guiding the future of humanity. Since the Anthropocene, anthropogenic activities have gradually steered the Earth system away from its established trajectory and had a powerful impact on the oxygen cycle. The human-induced disturbance of the global oxygen cycle, if not controlled, could greatly reduce the habitability of our planet.展开更多
The bay scallop and Peruvian scallop are economically important species.Interspecific hybrids of these two scallops outperformed both of their parent species in multiple growth traits but exhibited decreased fertility...The bay scallop and Peruvian scallop are economically important species.Interspecific hybrids of these two scallops outperformed both of their parent species in multiple growth traits but exhibited decreased fertility,which provides good models for the study of heterosis and species divergence.Genetic mapping serves as a chromosomal-level framework to investigate the molecular mechanisms of hybridization and introgression.In this study,high-resolution linkage maps were constructed for the bay and Peruvian scallops with an interspecific hybrid family.The linkage map of the bay scallop covered over 98.9% of the whole genome with 2994 mapped markers and the average marker interval of 0.32 cM.For the Peruvian scallop,1585 markers were mapped with the average maker interval of 0.51 cM,covering 97.7% of the genome.Both the two linkage maps have 16 linkage groups,corresponding to the haploid chromosome number of the two species.Approximately,54.5% of markers exhibited significant deviation from the expected Mendelian ratio of segregation,lending in sights into the intrinsic incompatibility between the two species.QTLs related to growth and shell coloration were detected,which could explain 13.1%and 74.9% of the phenotypic variance,respectively.This represents important information for further evaluation.These findings are an important addition to the genomic resources for scallop genetic studies,and are especially useful for investigations on genomic incompatibility for hybridization,genome evolution of closely related species,and genetic enhancement programs in aquaculture.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41888101, 41521004 & 41991231)the China University Research Talents Recruitment Program (111 Projects, Grant No. B13045)。
文摘As an important contributor to the habitability of our planet, the oxygen cycle is interconnected with the emergence and evolution of complex life and is also the basis to establish Earth system science. Investigating the global oxygen cycle provides valuable information on the evolution of the Earth system, the habitability of our planet in the geologic past, and the future of human life. Numerous investigations have expanded our knowledge of the oxygen cycle in the fields of geology,geochemistry, geobiology, and atmospheric science. However, these studies were conducted separately, which has led to onesided understandings of this critical scientific issue and an incomplete synthesis of the interactions between the different spheres of the Earth system. This review presents a five-sphere coupled model of the Earth system and clarifies the core position of the oxygen cycle in Earth system science. Based on previous research, this review comprehensively summarizes the evolution of the oxygen cycle in geological time, with a special focus on the Great Oxidation Event(GOE) and the mass extinctions, as well as the possible connections between the oxygen content and biological evolution. The possible links between the oxygen cycle and biodiversity in geologic history have profound implications for exploring the habitability of Earth in history and guiding the future of humanity. Since the Anthropocene, anthropogenic activities have gradually steered the Earth system away from its established trajectory and had a powerful impact on the oxygen cycle. The human-induced disturbance of the global oxygen cycle, if not controlled, could greatly reduce the habitability of our planet.
基金the Grant support from National Natural Science Foundation of China(U1706203,31172404 and 31572618)Taishan Scholar Project Fund of Shandong Province of China,and Youth Talent Program Supported by Laboratory for Marine Fisheries Science and Food Production Processes,Pilot National Laboratory for Marine Science and Technology(Qingdao)(2018-MFS-T07).
文摘The bay scallop and Peruvian scallop are economically important species.Interspecific hybrids of these two scallops outperformed both of their parent species in multiple growth traits but exhibited decreased fertility,which provides good models for the study of heterosis and species divergence.Genetic mapping serves as a chromosomal-level framework to investigate the molecular mechanisms of hybridization and introgression.In this study,high-resolution linkage maps were constructed for the bay and Peruvian scallops with an interspecific hybrid family.The linkage map of the bay scallop covered over 98.9% of the whole genome with 2994 mapped markers and the average marker interval of 0.32 cM.For the Peruvian scallop,1585 markers were mapped with the average maker interval of 0.51 cM,covering 97.7% of the genome.Both the two linkage maps have 16 linkage groups,corresponding to the haploid chromosome number of the two species.Approximately,54.5% of markers exhibited significant deviation from the expected Mendelian ratio of segregation,lending in sights into the intrinsic incompatibility between the two species.QTLs related to growth and shell coloration were detected,which could explain 13.1%and 74.9% of the phenotypic variance,respectively.This represents important information for further evaluation.These findings are an important addition to the genomic resources for scallop genetic studies,and are especially useful for investigations on genomic incompatibility for hybridization,genome evolution of closely related species,and genetic enhancement programs in aquaculture.