There has been an increase in the incidence of hypopharyngeal and cervical esophageal cancer worldwide,and hence growing needs for hypopharyngeal and cervical esophageal tissue repair.This work produced a bi-layer com...There has been an increase in the incidence of hypopharyngeal and cervical esophageal cancer worldwide,and hence growing needs for hypopharyngeal and cervical esophageal tissue repair.This work produced a bi-layer composite scaffold with decellularized small intestine submucosa and polylactic-co-glycolic acid,which resembled the layered architectures of its intended tissues.The decellularized small intestine submucosa contained minimal residual DNA(52.5±61.2 ng/mg)and the composite scaffold exhibited satisfactory mechanical properties(a tensile modulus of 21.1±64.8 MPa,an ultimate tensile strength of 14.0±62.9MPa and a failure strain of 26.9±65.1%).The interactions between cells and the respective layers of the scaffold were characterized by CCK-8 assays,immunostaining and Western blotting.Desirable cell proliferation and phenotypic behaviors were observed.These results have provided an important basis for the next-step in vivo studies of the scaffold,and bode well for its future clinical applications.展开更多
基金This study was funded by Ningbo Municipal Bureau of Science and Technology(Grant No.202002N3125).
文摘There has been an increase in the incidence of hypopharyngeal and cervical esophageal cancer worldwide,and hence growing needs for hypopharyngeal and cervical esophageal tissue repair.This work produced a bi-layer composite scaffold with decellularized small intestine submucosa and polylactic-co-glycolic acid,which resembled the layered architectures of its intended tissues.The decellularized small intestine submucosa contained minimal residual DNA(52.5±61.2 ng/mg)and the composite scaffold exhibited satisfactory mechanical properties(a tensile modulus of 21.1±64.8 MPa,an ultimate tensile strength of 14.0±62.9MPa and a failure strain of 26.9±65.1%).The interactions between cells and the respective layers of the scaffold were characterized by CCK-8 assays,immunostaining and Western blotting.Desirable cell proliferation and phenotypic behaviors were observed.These results have provided an important basis for the next-step in vivo studies of the scaffold,and bode well for its future clinical applications.